Xinjiang Petroleum Geology ›› 2021, Vol. 42 ›› Issue (1): 81-87.doi: 10.7657/XJPG20210111
• RESERVOIR ENGINEERING • Previous Articles Next Articles
ZHEN Huaibin1,2, ZHAO Haifeng3(), WANG Chengwang1, LAN Jianli3, JI Liang1, SUN Hang3, WANG Xuan1
Received:
2020-03-05
Revised:
2020-08-18
Online:
2021-02-01
Published:
2021-02-24
Contact:
ZHAO Haifeng
E-mail:zhaohf@cup.edu.cn
CLC Number:
ZHEN Huaibin, ZHAO Haifeng, WANG Chengwang, LAN Jianli, JI Liang, SUN Hang, WANG Xuan. Physical Modelling of Artificial Fracture Conductivity of Glutenite[J]. Xinjiang Petroleum Geology, 2021, 42(1): 81-87.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | 李建忠, 郑民, 张国生 , 等. 中国常规与非常规天然气资源潜力及发展前景[J]. 石油学报, 2012,33(增刊1):89-98. |
LI Jianzhong, ZHENG Min, ZHANG Guosheng , et al. Potential and prospects of conventional and unconventional natural gas resource in China[J]. Acta Petrolei Sinica, 2012,33(Supp.1):89-98. | |
[2] | 孟庆民, 张士诚, 郭先敏 , 等. 砂砾岩水力裂缝扩展规律初探[J]. 石油天然气学报, 2010,32(4):119-123. |
MENG Qingmin, ZHANG Shicheng, GUO Xianmin , et al. Preliminary study on the expansion law of hydraulic fractures in sandstone[J]. Journal of Oil and Gas Technology, 2010,32(4):119-123. | |
[3] | 苏煜彬, 林冠宇, 韩悦 . 致密砂岩储层水力加砂支撑裂缝导流能力[J]. 大庆石油地质与开发, 2017,36(6):141-145. |
SU Yubin, LIN Guanyu, HAN Yue . Conductivity of the hydraulic sand-added fractures in the tight sandstone reservoir[J]. Petroleum Geology & Oilfield Development in Daqing, 2017,36(6):141-145. | |
[4] | 黄禹忠, 何红梅, 孙光权 . 压裂支撑剂导流能力影响因素新研究[J]. 天然气技术与经济, 2012,6(5):59-61. |
HUANG Yuzhong, HE Hongmei, SUN Guangquan . New research on influence factors of proppant conductivity[J]. Natural Gas Technology and Economy, 2012,6(5):59-61. | |
[5] | NEUMANM L F . The effects of acid contact time and resulting weakening of the rock surfaces on acid fracture conductivity[R]. SPE 107772, 2007. |
[6] | 周少伟, 高伟, 祖凯 , 等. 致密碳酸盐岩储层水力加砂支撑裂缝导流能力实验研究[J]. 油气地质与采收率, 2016,23(4):118-120. |
ZHOU Shaowei, GAO Wei, ZU Kai , et al. An experimental research on flow conductivity of propped fracture by hydraulic sand fracturing in tight carbonate gas reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2016,23(4):118-120. | |
[7] | 赵金洲, 何弦桀, 李勇明 . 支撑剂嵌入深度计算模型[J]. 石油天然气学报, 2014,36(12):209-213. |
ZHAO Jinzhou, HE Xianjie, LI Yongming . Proppant penetration depth calculation model[J]. Journal of Oil and Gas Technology, 2014,36(12):209-213. | |
[8] | 温庆志, 张士诚, 王雷 , 等. 支撑剂嵌入对裂缝长期导流能力的影响研究[J]. 天然气工业, 2005,25(5):65-68. |
WEN Qingzhi, ZHANG Shicheng, WANG Lei , et al. Effects of proppant insertion on long-term fracture conductivity[J]. Natural Gas Industry, 2005,25(5):65-68. | |
[9] | 张士诚, 郭天魁, 周彤 , 等. 天然页岩压裂裂缝扩展机理试验[J]. 石油学报, 2014,35(3) : 496-503. |
ZHANG Shicheng, GUO Tiankui, ZHOU Tong , et al. Fracture propagation mechanism experiment of hydraulic fracturing in natural shale[J]. Acta Petrolei Sinica, 2014,35(3):496-503. | |
[10] | 包劲青, 刘合, 张广明 , 等. 分段压裂裂缝扩展规律及其对导流能力的影响[J]. 石油勘探与开发, 2017,44(2):281-287. |
BAO Jinqing, LIU He, ZHANG Guangming , et al. Fracture propagation laws in staged hydraulic fracturing and their effects on fracture conductivities[J]. Petroleum Exploration and Develpoment, 2017,44(2):281-287. | |
[11] | NOBAKHT M, CLARKSON C R, KAVIANI D . New type curves for analyzing horizontal well with multiple fractures in shale gas reservoirs[J]. Journal of Natural Gas Science and Engineering, 2016,10(1):99-112. |
[12] | KAN W, OLSON J E . Numerical investigation of complex hydraulic fracture development in naturally fractured reservoirs[R]. SPE 173326, 2015. |
[13] | BAZAN LW, LARKIN S D, LATTIBEUDIERE M G , et al. Improving production in the eagle ford shale with fracture modeling,increased fracture conductivity,and optimized stage and cluster spacing along the horizontal wellbore[R]. SPE 138425, 2010. |
[14] | LECAMPION B, ABBAS S, PRIOUL R . Competition between transverse and axil hydraulic fractures of horizontal wells[R]. SPE 163848, 2013. |
[15] | PEARSON M, GRIFFIN L, WEIJERS L . Breaking up is hard to do:creating hydraulic fracture complexity in the Bakken central basin[R]. SPE 163827, 2013. |
[16] | 张毅, 马兴芹, 靳保军 . 压裂支撑剂长期导流能力试验[J]. 石油钻采工艺, 2004,30(1):59-61. |
ZHANG Yi, MA Xingqin, JIN Baojun . Experiment on long-term conductivity of fracturing proppant[J]. Oil Drilling & Production Technology, 2004,30(1):59-61. | |
[17] | 张静娴, 许冬进, 廖锐全 . 砂砾岩致密油储层支撑剂导流能力预测[J]. 大庆石油地质与开发, 2019,38(6):149-154. |
ZHANG Jingxian, XU Dongjin, LIAO Ruiquan . Prediction of the conductivity of the proppant in glutenite tight oil reservoir[J]. Petroleum Geology & Oilfield Development in Daqing, 2019,38(6):149-154. | |
[18] | 采油采气专业标准化委员会. 压裂支撑剂充填层短期导流能力评价推荐方法:SY/T 6302—2009[S]. 北京:国家能源局, 2009: 1-15. |
Oil and Gas Production Professional Standardization Committee. Recommended practices for evaluating short term proppant pack conductivity:SY/T 6302—2009[S]. Beijing:National Energy Administration, 2009: 1-15. | |
[19] | 曲占庆, 黄德胜, 杨阳 , 等. 气藏压裂裂缝导流能力影响因素实验研究[J]. 断块油气田, 2014,21(3):391-393. |
QU Zhanqing, HUANG Desheng, YANG Yang , et al. Experimental research on influence factors of fracture conductivity in gas reservoir[J]. Fault-Block Oil & Gas Field, 2014,21(3):391-393. | |
[20] | 彭瑀, 李勇明, 赵金洲 , 等. 缝洞型碳酸盐岩油藏酸蚀裂缝导流能力模拟与分析[J]. 石油学报, 2015,36(5):606-611. |
PENG Yu, LI Yongming, ZHAO Jinzhou , et al. Simulation and analysis of acid-etched fracture conductivity of fracture-cavity carbonate reservoirs[J]. Acta Petrolei Sinica, 2015,36(5):606-611. | |
[21] | 孙贺东, 欧阳伟平, 张冕 , 等. 考虑裂缝变导流能力的致密气井现代产量递减分析[J]. 石油勘探与开发, 2018,45(3):455-462. |
SUN Hedong, OUYANG Weiping, ZHANG Mian , et al. Advanced production decline analysis of tight gas wells with variable fracture conductivity[J]. Petroleum Exploration and Development, 2018,45(3):455-462. | |
[22] | 解慧, 卢渊, 伊向艺 , 等. 不同砾石含量砂砾岩酸蚀裂缝导流能力[J]. 油气藏评价与开发, 2011,1(5):40-42. |
XIE Hui, LU Yuan, YI Xiangyi , et al. Flow conductivity of acid etching fracture of the glutenites with various gravel content[J]. Reservoir Evaluation and Development, 2011,1(5):40-42. | |
[23] | 才博, 赵贤正, 沈华 , 等. 束鹿凹陷致密油复合体积压裂技术[J]. 石油学报, 2015,36(1):77-81. |
CAI Bo, ZHAO Xianzheng, SHEN Hua , et al. Hybrid stimulated reservoir volume technology for tight oil in Shulu sag[J]. Acta Petrolei Sinica, 2015,36(1):77-81. | |
[24] | 许江文, 李建民, 邬元月 , 等. 玛湖致密砾岩油藏水平井体积压裂技术探索与实践[J]. 中国石油勘探, 2019,24(2):242-248. |
XU Jiangwen, LI Jianmin, WU Yuanyue , et al. Exploration and practice of volume fracturing technology in horizontal well of Mahu tight conglomerate reservoirs[J]. China Petroleum Exploration, 2019,24(2):242-248. | |
[25] | 路宗羽, 赵飞, 雷鸣 , 等. 新疆玛湖油田砂砾岩致密油水平井钻井关键技术[J]. 石油钻探技术, 2019,47(2):10-13. |
LU Zongyu, ZHAO Fei, LEI Ming , et al. Key technologies for drilling horizontal wells in glutenite tight oil in the Mahu oilfield of Xinjiang[J]. Petroleum Drilling Techniques, 2019,47(2):10-13. | |
[26] | 何红梅, 李尚贵, 杨兵 , 等. 纤维对支撑剂导流能力影响实验研究[J]. 钻采工艺, 2009,32(1):75-77. |
HE Hongmei, LI Shanggui, YANG Bing , et al. Experimental research on the effect of fiber on proppant conductivity[J]. Drilling & Production Technology, 2009,32(1):75-77. | |
[27] | 王雷, 张士诚 . 防回流纤维对支撑剂导流能力实验研究[J]. 钻采工艺, 2010,33(4):97-101. |
WANG Lei, ZHANG Shicheng . Experimental research on the conductivity of proppant by anti-backflow fiber[J]. Drilling & Production Technology, 2010,33(4):97-101. | |
[28] | 王振宇, 林伯韬, 于会永 , 等. 克拉玛依油田七区八道湾组砂砾岩油藏地应力特征[J]. 新疆石油地质, 2020,41(3):314-320. |
WANG Zhenyu, LIN Botao, YU Huiyong , et al. Characteristics of in-situ stress in sandy conglomerate reservoir of Badaowan formation in District No.7,Karamay oilfield[J]. Xinjiang Petroleum Geology, 2020,41(3):314-320. | |
[29] | 刘向君, 熊健, 梁利喜 , 等. 玛湖凹陷百口泉组砂砾岩储集层岩石力学特征与裂缝扩展机理[J]. 新疆石油地质, 2018,39(1):83-91. |
LIU Xiangjun, XIONG Jian, LIANG Lixi , et al. Rock mechanical characteristics and fracture propagation mechanism of sandy conglomerate reservoirs in Baikouquan formation of Mahu sag[J]. Xinjiang Petroleum Geology, 2018,39(1):83-91. | |
[30] | 马聪, 王剑, 连丽霞 , 等. CT扫描在富泥储集层孔隙特征研究中的应用:以玛湖凹陷玛18井区为例[J]. 新疆石油地质, 2019,40(6):736-744. |
MA Cong, WANG Jian, LIAN Lixia , et al. Application of CT scanning in study on pore features of mud-rich reservoir :a case of Wellblock Ma-18 in Mahu sag[J]. Xinjiang Petroleum Geology, 2019,40(6):736-744. |
[1] | LI Fengling, XU Shipeng, LIU Tao, LU Zhiming, LI Xiang, Aini MAMAT. Genesis and Fluid Identification Method of Cretaceous Low-Resistivity Oil Layers in WTK Oilfield [J]. Xinjiang Petroleum Geology, 2022, 43(2): 241-251. |
[2] | XIE Fang, CAI Deyang, LIU Ruilin, ZHANG Chengsen, FENG Cheng. Parameters of Connected Conducting Model and Its Application in Dolomite Reservoir Evaluation [J]. Xinjiang Petroleum Geology, 2022, 43(1): 92-101. |
[3] | CHEN Chaofeng, WANG Jia, YU Tianxi, LI Yi, ZOU Yushi, MA Xinfang, LIU Li. Proppant Migration Law in Fractures of Conglomerate Reservoirs of Wuerhe Formation in Mahu Sag [J]. Xinjiang Petroleum Geology, 2021, 42(5): 559-564. |
[4] | LEI Sheng, ZHOU Yuhui, WANG Ning, Saierjiang AHATI, ZHENG Qiang, SHENG Guanglong. Injection-Production Optimization of Carbonate Oil Reservoirs Based on a Well Connectivity Model [J]. Xinjiang Petroleum Geology, 2021, 42(5): 584-591. |
[5] | MIN Wei. Sedimentary Characteristics of Glutenites of Sha 3 Member in Block Tuo 826, Dongying Sag [J]. Xinjiang Petroleum Geology, 2021, 42(4): 428-436. |
[6] | WANG Shuo, QIN Jianhua, YANG Xinping, LI Xiaoshan, ZHANG Yi, WANG Yingwei. Stress Simulation of Vetical Hydraulic Fracture Propatation Mechanism in Tight Conglomorate Reseriors of Mahu Area [J]. Xinjiang Petroleum Geology, 2020, 41(2): 193-198. |
[7] | WANG Liqiang, CUI Yinghuai, JING Wenbo, FU Yonghong, DONG Ming, WANG Xuewu. Time-Varying Sequence Analysis of Generalized Vogel Equation for Fracturing Wells in Fractured Volcanic Reservoirs [J]. Xinjiang Petroleum Geology, 2019, 40(zk(English) ): 307-311. |
[8] | WANG Liqiang1, CUI Yinghuai2, JING Wenbo2, FU Yonghong2, DONG Ming2, WANG Xuewu1. Time-Varying Sequence Analysis of Generalized Vogel Equation for Fracturing Wells in Fractured Volcanic Reservoirs [J]. , 2019, 40(3): 1-1. |
[9] | CAO Guangsheng1, BAI Yujie1, DU Tong1, YANG Tingyuan1, YAN Hongyang2. Study on Proppant Backflow Based on Finite Element Simulation [J]. , 2019, 40(2): 1-1. |
[10] | WANG Jinghui1a, MEI Minghua2, LIANG Zhengzhong1a, WANG Huajun2, LIU Juan1b. Dynamic Pressure Characteristics of Unconventional Fractures during Multi?Staged Fracturing in Horizontal Wells [J]. , 2018, 39(1): 1-1. |
[11] | WANG Bin1,2, YIN Lu1, CHEN Yongbo1, TENG Tuanyu1, LI Dezi1. OVT Domain Based Prediction Technology for Low Permeability Sandy Conglomerate Reservoirs [J]. , 2018, 39(1): 1-1. |
[12] | GAO Yang. Lower Limits of Physical Properties of Glutenite Reservoir in Lower Section of the 4th Member of Shahejie Formation in Steep Slope Zone of Northern Dongying Sag [J]. Xinjiang Petroleum Geology, 2017, 38(zk(English) ): 36-44. |
[13] | ZHANG Hengrong, TAN Wei, WANG Lijuan, DING Lei. Variations of Rock Resistivity in Water-Flooded Zones of Waterflooding Oilfield [J]. Xinjiang Petroleum Geology, 2017, 38(zk(English) ): 73-78. |
[14] | WANG Yanzhang1, LIU Yali2, ZHU Yongfeng3, CAO Xiaoli4, GAO Fei5. Sedimentary Sequences of Glutenite on the Steep Slope in Northern Guojuzi Subsag of Chezhen Sag, Jiyang Depression [J]. , 2017, 38(6): 1-1. |
[15] | GAO Yang. Lower Limits of Physical Properties of Glutenite Reservoir in Lower Section of the 4th Member of Shahejie Formation in Steep Slope Zone of Northern Dongying Sag [J]. , 2017, 38(5): 1-1. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||