Xinjiang Petroleum Geology ›› 2024, Vol. 45 ›› Issue (6): 735-741.doi: 10.7657/XJPG20240613
• APPLICATION OF TECHNOLOGY • Previous Articles Next Articles
DAI Jinyou(), LEI Xizhen, PI Sha, SHEN Xiaoshu, CHEN Daixin
Received:
2024-05-11
Revised:
2024-06-05
Online:
2024-12-01
Published:
2024-11-26
CLC Number:
DAI Jinyou, LEI Xizhen, PI Sha, SHEN Xiaoshu, CHEN Daixin. Configuration Pattern of Combined Conventional Mercury Intrusion-Constant Rate Mercury Intrusion Curves and Its Indicative Significance[J]. Xinjiang Petroleum Geology, 2024, 45(6): 735-741.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1.
Characteristic parameters of CRMI and CMI (modified from Reference [24])"
岩样 编号 | 孔隙度/ % | 渗透率/ mD | 压汞 方式 | 压力段/ MPa | 最大进汞 饱和度/% | 分选系数 | 歪度 | 峰态 | 喉道均质 系数 | 平均喉道半径/ μm | 储集层类型 |
---|---|---|---|---|---|---|---|---|---|---|---|
JQ | 19.5 | 63.860 | 常规 | 0~100.0 | 88.42 | 2.371 | 0.370 | 0.763 | 0.453 | 3.944 | 中孔中渗 |
恒速 | 0~6.2 | 81.05 | 1.807 | 0.428 | 0.784 | 0.474 | 4.001 | ||||
JK | 11.7 | 1.280 | 常规 | 0~100.0 | 90.38 | 2.284 | 0.322 | 0.758 | 0.507 | 0.726 | 低孔特低渗 |
恒速 | 0~6.2 | 63.64 | 1.101 | 0.338 | 0.934 | 0.411 | 0.943 | ||||
JE | 5.5 | 0.100 | 常规 | 0~200.0 | 84.19 | 1.622 | 0.231 | 0.932 | 0.290 | 0.216 | 特低孔超低渗 |
恒速 | 0~6.2 | 56.81 | 0.778 | 0.247 | 0.682 | 0.517 | 0.375 | ||||
JB | 6.5 | 0.025 | 常规 | 0~200.0 | 92.32 | 1.434 | 0.406 | 0.923 | 0.481 | 0.099 | 特低孔超低渗 |
恒速 | 0~6.2 | 37.20 | 0.360 | 0.418 | 0.733 | 0.781 | 0.207 |
[1] | 郑欣. 毛细管压力曲线法与CT扫描数字岩心技术的应用对比分析[J]. 海洋石油, 2023, 43(4):18-23. |
ZHENG Xin. Comparative analysis of the application of capillary pressure curve method and CT scanning digital core technique[J]. Offshore Oil, 2023, 43(4):18-23. | |
[2] |
田杰, 王亮, 司马立强, 等. 基于微电阻率成像测井的储集层物性及孔隙结构表征:孔隙度谱、渗透率谱及等效毛细管压力曲线[J]. 石油勘探与开发, 2023, 50(3):553-561.
doi: 10.11698/PED.20220850 |
TIAN Jie, WANG Liang, SIMA Liqiang, et al. Characterization of reservoir properties and pore structure based on micro-resistivity imaging logging:Porosity spectrum,permeability spectrum,and equivalent capillary pressure curve[J]. Petroleum Exploration and Development, 2023, 50(3):553-561. | |
[3] |
李新文, 吴华. 基于改进毛细管压力曲线的非均质储层分级评价与应用[J]. 特种油气藏, 2022, 29(2):128-134.
doi: 10.3969/j.issn.1006-6535.2022.02.019 |
LI Xinwen, WU Hua. Classification evaluation and application of heterogeneous reservoirs on capillary pressure curve[J]. Special Oil & Gas Reservoirs, 2022, 29(2):128-134. | |
[4] | 侯玢池, 崔鹏兴, 梁卫卫, 等. 基于岩电实验的储层岩石毛细管压力与电阻率相关性分析[J]. 大庆石油地质与开发, 2022, 41(2):75-82. |
HOU Binchi, CUI Pengxing, LIANG Weiwei, et al. Correlation analysis between the capillary pressure and resistivity of the reservoir rock based on the rock electric test[J]. Petroleum Geology & Oilfield Development in Daqing, 2022, 41(2):75-82. | |
[5] | 郭一凡, 司马立强, 王亮, 等. 基于偏最小二乘回归方法的毛细管压力曲线预测超致密砂岩储层渗透率[J]. 油气地质与采收率, 2022, 29(6):67-76. |
GUO Yifan, SIMA Liqiang, WANG Liang, et al. Prediction of ultra-tight sandstone reservoir permeability by capillary pressure curve based on partial least squares regression method[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(6):67-76. | |
[6] | 宋党育, 赵雨薇, 李云波, 等. 低—中阶煤压汞实验可靠性分析与压缩性校正[J]. 煤田地质与勘探, 2023, 51(5):33-44. |
SONG Dangyu, ZHAO Yuwei, LI Yunbo, et al. Reliability analysis and compressibility correction of mercury intrusion porosimetry experiments for low-medium-rank coals[J]. Coal Geology & Exploration, 2023, 51(5):33-44. | |
[7] | 孙雅雄, 张坦, 丁文龙, 等. 压汞法与数字图像分析技术在致密砂岩储层微观孔隙定量分析中的应用:以鄂尔多斯盆地吴起油田X区块为例[J]. 石油实验地质, 2022, 44(6):1105-1115. |
SUN Yaxiong, ZHANG Tan, DING Wenlong, et al. Application of mercury intrusion method and digital image analysis in quantitative analysis of micro-scale pores in tight sandstone reservoirs:A case study of X block in Wuqi oil field,Ordos basin[J]. Petroleum Geology & Experiment, 2022, 44(6):1105-1115. | |
[8] | 陈科, 唐磊, 尹超, 等. 高阶煤煤岩毛细管压力曲线新数学模型及关键参数[J]. 煤田地质与勘探, 2021, 49(2):77-82. |
CHEN Ke, TANG Lei, YIN Chao, et al. New mathematical model and key parameters of capillary pressure curves of high-rank coal samples[J]. Coal Geology & Exploration, 2021, 49(2):77-82. | |
[9] | 王静, 郗兆栋, 陆冬华. 基于恒速压汞技术研究页岩气储层孔隙结构:以湘西北地区五峰组页岩为例[J]. 地质与勘探, 2021, 57(2):450-456. |
WANG Jing, XI Zhaodong, LU Donghua. Pore structure of shale gas reservoirs revealed by constant-speed mercury injection experiments:A case study of Wufeng formation shale from northwestern Hunan province[J]. Geology and Exploration, 2021, 57(2):450-456. | |
[10] | 王羽君, 赵晓东, 周伯玉, 等. 基于高压压汞-恒速压汞的低渗砂岩储层孔隙结构评价[J]. 断块油气田, 2022, 29(6):824-830. |
WANG Yujun, ZHAO Xiaodong, ZHOU Boyu, et al. Evaluation of pore structure in low permeability sandstone reservoir based on high pressure-constant velocity mercury injection[J]. Fault-Block Oil & Gas Field, 2022, 29(6):824-830. | |
[11] | WU Hao, JI Youliang, LIU Ruie, et al. Insight into the pore structure of tight gas sandstones:A case study in the Ordos basin,NW China[J]. Energy & Fuels, 2017, 31(12):13159-13178. |
[12] | 宋亚程, 韩冬青, 庞志宇, 等. 居住型历史地段的空间构型认知与更新实施决策[J/OL]. 国际城市规划:1-16[2024-05-07]. http://link.cnki.net/urlid/11.5583.TU.20240507.1150.003. |
SONG Yacheng, HAN Dongqing, PANG Zhiyu, et al. Spatial configuration cognition and renewal implementation decision-making of residential historical districts[J/OL]. Urban Planning International:1-16[2024-05-07]. http://link.cnki.net/urlid/11.5583.TU.20240507.1150.003. | |
[13] | 朱黎明. 基于拓扑优化的钢桥结构合理构型研究[J]. 河南大学学报(自然科学版), 2019, 49(5):612-617. |
ZHU Liming. Research on the optimal configuration of steel bridge based on topology optimization[J]. Journal of Henan University(Natural Science), 2019, 49(5):612-617. | |
[14] | 郭其轶, 邓章豪, 金少雄. 经典构型的传承与发展:以揭阳潮汕机场航站楼改扩建设计为例[J]. 建筑技艺, 2021, 27(4):78-80. |
GUO Qiyi, DENG Zhanghao, JIN Shaoxiong. Inheritance and development of classic configuration:Terminal renovation and expansion of Jieyang Chaoshan internation airport[J]. Architecture Technique, 2021, 27(4):78-80. | |
[15] | 王丹, 尹伟萌, 孟悦. 可重构式机械臂运动构型与关节控制系统研究[J]. 机械与电子, 2020, 38(2):53-57. |
WANG Dan, YIN Weimeng, MENG Yue. Research on motion configuration and joint control system of reconfigurable manipulator[J]. Machinery & Electronics, 2020, 38(2):53-57. | |
[16] |
张学军, 陈冰清. 航空典型金属材料增材制造组织、缺陷、表面、构型研究进展[J]. 航空材料学报, 2024, 44(1):1-14.
doi: 10.11868/j.issn.1005-5053.2023.000230 |
ZHANG Xuejun, CHEN Bingqing. Research progress on microstructure,defects,surface and configuration of additive manufactured typical aviation metals[J]. Journal of Aeronautical Materials, 2024, 44(1):1-14.
doi: 10.11868/j.issn.1005-5053.2023.000230 |
|
[17] | 任云英, 吴晓晨. 历史文化名城文脉空间单元及其构型模式初探[J]. 城市建筑, 2020, 17(25):81-83. |
REN Yunying, WU Xiaochen. Preliminary study on the context spatial unit and its configuration mode of the famous historical and cultural cities[J]. Urbanism and Architecture, 2020, 17(25):81-83. | |
[18] | ALLEN J R L. The plan shape of current ripples in relation to flow conditions[J]. Sedimentology, 1977, 24(1):53-62. |
[19] | 任奕霖, 赵俊峰, 陈佳宇, 等. 鄂尔多斯盆地浅水三角洲前缘沉积特征与砂体构型:以宜川仕望河剖面长9油层组为例[J]. 新疆石油地质, 2022, 43(3):310-319. |
REN Yilin, ZHAO Junfeng, CHEN Jiayu, et al. Sedimentary characteristics and sand body architecture of shallow delta front in Ordos basin:A case study of Chang 9 member in Shiwanghe section in Yichuan[J]. Xinjiang Petroleum Geology, 2022, 43(3):310-319. | |
[20] |
郭颖, 冯文杰, 李少华, 等. 砂质辫状河中河边滩和河心滩沉积构型:基于沉积演化过程的精细解析[J]. 地球科学进展, 2024, 39(4):405-418.
doi: 10.11867/j.issn.1001-8166.2024.028 |
GUO Ying, FENG Wenjie, LI Shaohua, et al. Sedimentary architecture between compound middle bars and side bars:Insights from a numerical model of sandy braided rivers[J]. Advances in Earth Science, 2024, 39(4):405-418.
doi: 10.11867/j.issn.1001-8166.2024.028 |
|
[21] | 朱筱敏, 陈贺贺, 葛家旺, 等. 陆相断陷湖盆层序构型与砂体发育分布特征[J]. 石油与天然气地质, 2022, 43(4):746-762. |
ZHU Xiaomin, CHEN Hehe, GE Jiawang, et al. Characterization of sequence architectures and sandbody distribution in continental rift basins[J]. Oil & Gas Geology, 2022, 43(4):746-762. | |
[22] | 吴泽民, 柯先启, 张攀, 等. 鄂尔多斯盆地姬塬地区长9段砂体构型[J]. 新疆石油地质, 2022, 43(3):294-309. |
WU Zemin, KE Xianqi, ZHANG Pan, et al. Sand body architecture of Chang 9 member in Jiyuan area,Ordos basin[J]. Xinjiang Petroleum Geology, 2022, 43(3):294-309. | |
[23] | 何顺利, 焦春艳, 王建国, 等. 恒速压汞与常规压汞的异同[J]. 断块油气田, 2011, 18(2):235-237. |
HE Shunli, JIAO Chunyan, WANG Jianguo, et al. Discussion on the differences between constant-speed mercury injection and conventional mercury injection techniques[J]. Fault-Block Oil & Gas Field, 2011, 18(2):235-237. | |
[24] |
朱华银, 安来志, 焦春艳. 恒速与恒压压汞差异及其在储层评价中的应用[J]. 天然气地球科学, 2015, 26(7):1316-1322.
doi: 10.11764/j.issn.1672-1926.2015.07.1316 |
ZHU Huayin, AN Laizhi, JIAO Chunyan. The difference between constant-rate mercury injection and constant-pressure mercury injection and the application in reservoir assessment[J]. Natural Gas Geoscience, 2015, 26(7):1316-1322.
doi: 10.11764/j.issn.1672-1926.2015.07.1316 |
|
[25] | 汤永净, 汪鹏飞, 邵振东. 压汞实验和误差分析[J]. 实验技术与管理, 2015, 32(5):50-54. |
TANG Yongjing, WANG Pengfei, SHAO Zhendong. Mercury intrusion porosimetry and error analysis[J]. Experimental Technology and Management, 2015, 32(5):50-54. | |
[26] | 肖阳, 萧汉敏, 姜振学, 等. 恒速与高压压汞实验表征致密砂岩储层孔喉结构差异性分析[J]. 能源与环保, 2021, 43(3):59-63. |
XIAO Yang, XIAO Hanmin, JIANG Zhenxue, et al. Analysis on difference of pore-throat structure of tight stone reservoirs characterized by constant-rate mercury intrusion and conventional and high pressure mercury intrusion experiments[J]. China Energy and Environmental Protection, 2021, 43(3):59-63. | |
[27] | 李昊远, 庞强, 魏克颖, 等. 致密砂岩储层孔隙结构分形特征对气水渗流规律的影响:以苏里格气田东南部桃2区块山1段为例[J]. 断块油气田, 2023, 30(2):177-185. |
LI Haoyuan, PANG Qiang, WEI Keying, et al. Influence of pore structure fractal features of tight sandstone reservoir on gas-water seepage law:A case study of Shan 1 member in Tao 2 block of southeastern Sulige gas field[J]. Fault-Block Oil & Gas Field, 2023, 30(2):177-185. | |
[28] | 赵华伟, 宁正福, 赵天逸, 等. 恒速压汞法在致密储层孔隙结构表征中的适用性[J]. 断块油气田, 2017, 24(3):413-416. |
ZHAO Huawei, NING Zhengfu, ZHAO Tianyi, et al. Applicability of rate-controlled porosimetry experiment to pore structure characterization of tight oil reservoirs[J]. Fault-Block Oil & Gas Field, 2017, 24(3):413-416. | |
[29] | WANG Sen, JAVADPOUR F, FENG Qihong. Confinement correction to mercury intrusion capillary pressure of shale nanopores[J]. Science, 2016, 6(10):1-12. |
[1] | LIU Xiaopeng, LIU Xinshe, ZHAO Huitao, WANG Huaichang, ZHANG Hui. A New Method to Calculate the Lower Limit of Effective Pore Throat Threshold of Tight Sandstone Reservoirs: A Case Study of He8 Gas Reservoir in Sulige Gas Field [J]. , 2016, 37(3): 1-1. |
[2] | ZANG Shi-bin, ZHENG Yong-xian, SUN Xi, XU Wen-mei, CHEN Yue-qing. Comparisons of Capillary Pressure Curves Between Low Permeability Sandstone and Micro-Fractured Marlstone [J]. Xinjiang Petroleum Geology, 2011, 32(5): 504-507. |
[3] | WAN Wen-sheng, DU Jun-she, TONG Guo-zhang, ZOU Min, QIN Xu-sheng, TAN Wen-dong, NAN Hui. Application of Capillary Pr essur e to Determination of Cut-off Pore-Throat Radius in Reservoirs [J]. Xinjiang Petroleum Geology, 2006, 27(1): 104-106. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||