Xinjiang Petroleum Geology ›› 2022, Vol. 43 ›› Issue (4): 433-439.doi: 10.7657/XJPG20220408
• RESERVOIR ENGINEERING • Previous Articles Next Articles
CHENG Zhenghua1(), AI Chi1(
), ZHANG Jun1, YAN Maosen1, TAO Feiyu1, BAI Mingtao2
Received:
2021-10-18
Revised:
2022-01-05
Online:
2022-08-01
Published:
2022-07-26
Contact:
AI Chi
E-mail:18327823762@qq.com;aichi2017@163.com
CLC Number:
CHENG Zhenghua, AI Chi, ZHANG Jun, YAN Maosen, TAO Feiyu, BAI Mingtao. Influences of Cemented Natural Fractures on Propagation of Hydraulic Fractures[J]. Xinjiang Petroleum Geology, 2022, 43(4): 433-439.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] |
LI Yuwei, JIA Dan, RUI Zhenhua, et al. Evaluation method of rock brittleness based on statistical constitutive relations for rock damage[J]. Journal of Petroleum Science and Engineering, 2017, 153:123-132.
doi: 10.1016/j.petrol.2017.03.041 |
[2] |
JIANG Guosheng, CHENG Wan. Hydraulic fracture deflection at bedding plane due to the non-orthogonal propagation and the dissimilar material properties[J]. Arabian Journal for Science and Engineering, 2018, 43(11):6535-6540.
doi: 10.1007/s13369-018-3291-2 |
[3] |
XU Wenjun, ZHAO Jinzhou, RAHMAN S S, et al. A comprehensive model of a hydraulic fracture interacting with a natural fracture:analytical and numerical solution[J]. Rock Mechanics and Rock Engineering, 2019, 52(4):1095-1113.
doi: 10.1007/s00603-018-1608-9 |
[4] | 张安顺, 杨正明, 李晓山, 等. 老区直井重复体积压裂改造效果评价[J]. 新疆石油地质, 2020, 41(3):372-378. |
ZHANG Anshun, YANG Zhengming, LI Xiaoshan, et al. Evaluation of volume refracturing effect in vertical wells in existing blocks[J]. Xinjiang Petroleum Geology, 2020, 41(3):372-378. | |
[5] |
CHUPRAKOV D, MELCHAEVA O, PRIOUL R. Injection-sensitive mechanics of hydraulic fracture interaction with discontinuities[J]. Rock Mechanics and Rock Engineering, 2014, 47(5):1625-1640.
doi: 10.1007/s00603-014-0596-7 |
[6] | 衡帅, 杨春和, 曾义金, 等. 页岩水力压裂裂缝形态的试验研究[J]. 岩土工程学报, 2014, 36(7):1243-1251. |
HENG Shuai, YANG Chunhe, ZENG Yijin, et al. Experimental study on hydraulic fracture geometry of shale[J]. Chinese Journal of Geotechnical Engineering, 2014, 36 (7):1243-1251. | |
[7] |
WASANTHA P L P, KONIETZKY H. Fault reactivation and reservoir modification during hydraulic stimulation of naturally-fractured reservoirs[J]. Journal of Natural Gas Science and Engineering, 2016, 34:908-916.
doi: 10.1016/j.jngse.2016.07.054 |
[8] |
LI Yuwei, LONG Min, TANG Jizhou, et al. A hydraulic fracture height mathematical model considering the influence of plastic region at fracture tip[J]. Petroleum Exploration and Development, 2020, 47 (1):184-195.
doi: 10.1016/S1876-3804(20)60017-9 |
[9] | 席一凡. 裂缝性致密储层中水力裂缝扩展规律的数值模拟分析[D]. 辽宁大连: 大连理工大学, 2017. |
XI Yifan. Numerical investigation on the propagation of hydraulic fractures in fractured reservoirs[D]. Dalian,Liaoning: Dalian University of Technology, 2017. | |
[10] | 蒲晓, 郭大立, 兰天, 等. 低渗透油藏转向压裂产能预测及影响因素[J]. 新疆石油地质, 2021, 42(1):76-80. |
PU Xiao, GUO Dali, LAN Tian, et al. Productivity prediction and influencing factors of low permeability reservoirs after steering fracturing stimulation[J]. Xinjiang Petroleum Geology, 2021, 42(1):76-80. | |
[11] | 张子麟, 席一凡, 李明, 等. 裂缝性储层中复杂压裂缝网形成过程的数值模拟[J]. 油气地质与采收率, 2018, 25(2):109-114. |
ZHANG Zilin, XI Yifan, LI Ming, et al. Numerical simulation on the formation of complex fracture network in fractured reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2018, 25(2):109-114. | |
[12] |
VAHAB M, KHOEI A R, KHALILI N. An X-FEM technique in modeling hydro-fracture interaction with naturally cemented faults[J]. Engineering Fracture Mechanics, 2019, 212:269-290.
doi: 10.1016/j.engfracmech.2019.03.020 |
[13] |
CORDERO R J A, SANCHEZ M E C, ROEHL D, et al. Hydro-mechanical modeling of hydraulic fracture propagation and its interactions with frictional natural fractures[J]. Computers and Geotechnics, 2019, 111:290-300.
doi: 10.1016/j.compgeo.2019.03.020 |
[14] | 李军, 翟文宝, 陈朝伟, 等. 基于零厚度内聚力单元的水力裂缝随机扩展方法研究[J]. 岩土力学, 2021, 42(1):265-279. |
LI Jun, ZHAI Wenbao, CHEN Chaowei, et al. Research on random propagation method of hydraulic fracture based on zero-thickness cohesive element[J]. Rock and Soil Mechanics, 2021, 42(1):265-279. | |
[15] |
YOON J S, ZANG A, STEPHANSSON O, et al. Discrete element modelling of hydraulic fracture propagation and dynamic interaction with natural fractures in hard rock[J]. Procedia Engineering, 2017, 191:1023-1031.
doi: 10.1016/j.proeng.2017.05.275 |
[16] |
ZHANG Liuqing, ZHOU Jian, BRAUN A, et al. Sensitivity analysis on the interaction between hydraulic and natural fractures based on an explicitly coupled hydro-geomechanical model in PFC2D[J]. Journal of Petroleum Science and Engineering, 2018, 167:638-653.
doi: 10.1016/j.petrol.2018.04.046 |
[17] | 杨广智. 准噶尔盆地石炭系裂缝性火山岩压裂裂缝扩展规律研究[D]. 北京: 中国石油大学(北京), 2020. |
YANG Guangzhi. Investigation on hydraulic fracture propagation regularity of natural fractured carboniferous volcanic rock in Junggar basin[D]. Beijing: China University of Petroleum (Beijing), 2020. | |
[18] |
AMIR G, TAHERI-SHAKIB J, NIK M A S. The distinct element method (DEM) and the extended finite element method (XFEM) application for analysis of interaction between hydraulic and natural fractures[J]. Journal of Petroleum Science and Engineering, 2018, 171:422-430.
doi: 10.1016/j.petrol.2018.06.083 |
[19] | TANG Chun’an. Numerical simulation of progressive rock failure and associated seismicity[J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(2):249-261. |
[20] |
ZHANG Zhaobin, LI Xiao, YUAN Weina, et al. Numerical analysis on the optimization of hydraulic fracture networks[J]. Energies, 2015, 8(10):12061-12079.
doi: 10.3390/en81012061 |
[21] |
YANG T, LIU H Y, TANG C A. Scale effect in macroscopic permeability of jointed rock mass using a coupled stress-damage-flow method[J]. Engineering Geology, 2017, 228:121-136.
doi: 10.1016/j.enggeo.2017.07.009 |
[22] |
BU Lin, LI Shucai, SHI Shaoshuai, et al. Numerical investigation to influence of perforation angle on hydraulic fracturing process[J]. Geotechnical and Geological Engineering, 2019, 37(3):1125-1133.
doi: 10.1007/s10706-018-0672-y |
[23] |
ZHAO Yuan, CAO Shugang, SHANG Delei, et al. Crack propagation and crack direction changes during the hydraulic fracturing of coalbed[J]. Computers and Geotechnics, 2019, 111:229-242.
doi: 10.1016/j.compgeo.2019.03.018 |
[24] |
LI Lianchong, MENG Qingmin, WANG Shanyong, et al. A numerical investigation of the hydraulic fracturing behaviour of conglomerate in glutenite formation[J]. Acta Geotechnica, 2013, 8(6):597-618.
doi: 10.1007/s11440-013-0209-8 |
[25] | 侯冰, 陈勉, 张保卫, 等. 裂缝性页岩储层多级水力裂缝扩展规律研究[J]. 岩土工程学报, 2015, 37(6):1041-1046. |
HOU Bing, CHEN Mian, ZHANG Baowei, et al. Propagation of multiple hydraulic fractures in fractured shale reservoir[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6):1041-1046. | |
[26] | 夏彬伟, 杨冲, 卢义玉, 等. 页岩气储层水力裂缝网络的延伸规律[J]. 东北大学学报(自然科学版), 2016, 37(8):1193-1197. |
XIA Binwei, YANG Chong, LU Yiyu, et al. Hydraulic fracture network propagation rule of shale reservoir[J]. Journal of Northeastern University (Natural Science), 2016, 37(8):1193-1197. | |
[27] |
WANG Yu, LI Xiao, ZHANG Bo, et al. Numerical modeling of variable fluid injection-rate modes on fracturing network evolution in naturally fractured formations[J]. Energies, 2016, 9(6):414.
doi: 10.3390/en9060414 |
[28] | MEN Xiaoxi, LI Jiren, HAN Zhihui. Fracture propagation behavior of jointed rocks in hydraulic fracturing[J]. Advances in Materials Science and Engineering, 2018:1-12. |
[29] |
LI Tianjiao, LI Lianchong, TANG Chun’an, et al. A coupled hydraulic-mechanical damage geotechnical model for simulation of fracture propagation in geological media during hydraulic fracturing[J]. Journal of Petroleum Science and Engineering, 2019, 173:1390-1416.
doi: 10.1016/j.petrol.2018.10.104 |
[30] | 周文高, 王素兵, 杨焕强. 考虑页岩弱层理的水力裂缝扩展路径三维数值模拟[J]. 钻采工艺, 2021, 44(3):15-19. |
ZHOU Wengao, WANG Subing, YANG Huanqiang. Three-dimensional numerical simulation of hydraulic fracture propagation path considering weak shale bedding[J]. Drilling & Production Technology, 2021, 44(3):15-19. | |
[31] | 申峰, 任相彦, 周雷, 等. 储层非均质性对水力压裂裂缝扩展的影响研究[J]. 地下空间与工程学报, 2021, 17(5):1444-1456. |
SHEN Feng, REN Xiangyan, ZHOU Lei, et al. The influence of reservoir heterogeneity on hydraulic fracture propagation[J]. Chinese Journal of Underground Space and Engineering, 2021, 17(5):1444-1456. | |
[32] | 孟勇, 贾庆升, 张潦源, 等. 东营凹陷页岩油储层层间干扰及裂缝扩展规律研究[J]. 石油钻探技术, 2021, 49(4):130-138. |
MENG Yong, JIA Qingsheng, ZHANG Liaoyuan, et al. Research on interlayer interference and the fracture propagation law of shale oil reservoirs in the Dongying sag[J]. Petroleum Drilling Techniques, 2021, 49(4):130-138. |
[1] | YU Jianglong, CHEN Gang, WU Junjun, LI Wei, YANG Sen, TANG Tingming. Seismic Prediction Method of Geological and Engineering Shale Oil Sweet Spots and Its Application in Fengcheng Formation of Mahu Sag [J]. Xinjiang Petroleum Geology, 2022, 43(6): 757-766. |
[2] | CHEN Xuan, WANG Jufeng, XIAO Dongsheng, LIU Juntian, GOU Hongguang, ZHANG Hua, LIN Lin, LI Hongwei. Accumulation Conditions and Exploration Direction of Lower Jurassic Tight Sandstone Gas Reservoirs in Taibei Sag [J]. Xinjiang Petroleum Geology, 2022, 43(5): 505-512. |
[3] | DUAN Zhiqiang, XIA Hui, WANG Long, GAO Wei, FAN Qianqian, SHI Wei. Reservoir Characteristics and Controlling Factors of Shan 1 Member in Qingyang Gas Field, Ordos Basin [J]. Xinjiang Petroleum Geology, 2022, 43(3): 285-293. |
[4] | XIAO Feng, YUE Jun, LI Zhichao, LIU Lili, ZHANG Ji, FAN Jiwu, ZHANG Tao. Upper Limit of Water Saturation for Profitable Development of Tight Sandstone Gas Reservoirs in Sulige Gas Field [J]. Xinjiang Petroleum Geology, 2022, 43(3): 335-340. |
[5] | CHEN Zhanjun, REN Zhanli. Method for Calculating Single-Well Producing Geological Reserves and Single-Well Technically Recoverable Reserves in Tight Sandstone Gas Reservoirs: A Case of Carboniferous-Permian Gas Reservoirs in Yanchang Gas Field, Ordos Basin [J]. Xinjiang Petroleum Geology, 2022, 43(3): 360-367. |
[6] | WANG Liqiong, WANG Zhiheng, MA Yulong, ZENG Qingxiong, ZHENG Fan. Technologies and Application of Sidetracking Horizontal Well in Existing Wells in Sulige Gas Field [J]. Xinjiang Petroleum Geology, 2022, 43(3): 368-377. |
[7] | WANG Yinggang, SHEN Feng, WU Jinqiao, SUN Xiao, MU Jingfu, TANG Jiren. Differences in Microstructures Between Marine and Continental Shales and Its Influences on Shale Reservoir Fracbility [J]. Xinjiang Petroleum Geology, 2022, 43(1): 26-33. |
[8] | SHAN Xiang, GUO Huajun, CHEN Xiguang, DOU Yang. Genesis of Densification of Low-Permeability Tight Sandstone Reservoirs: A Case Study of Lower Jurassic Badaowan Formation in Mobei-Mosuowan Swell, Junggar Basin [J]. Xinjiang Petroleum Geology, 2021, 42(zk(English)): 93-100. |
[9] | XU Ke, YANG Haijun, ZHANG Hui, WANG Haiying, YUAN Fang, WANG Zhaohui, LI Chao. Current In-Situ Stress Field and Efficient Development of Bozi-1 Gas Reservoir in Kelasu Structural Belt [J]. Xinjiang Petroleum Geology, 2021, 42(zk(English)): 165-173. |
[10] | LU Xuesong, ZHANG Fengqi, ZHAO Mengjun, ZHUO Qingong, GUI Lili, YU Zhichao, LIU Qiang. Genesis of Overpressure and Sealing Ability of Caprocks in Well Gaotan 1 in the Southern Margin of Junggar Basin [J]. Xinjiang Petroleum Geology, 2021, 42(6): 666-675. |
[11] | CHEN Xiuping, SHEN Xinpu, LIU Jingtao, SHEN Guoxiao. Distribution of Natural Fractures and Mechanical Characteristics of Orogenic Movement in Carbonate Formations in Shunbei Oilfield [J]. Xinjiang Petroleum Geology, 2021, 42(5): 515-520. |
[12] | Huang Yiming, Richard COLLIER. Pore Throat Structure and Fractal Characteristics of Tight Sandstone Reservoirs: A Case Study of Upper Montney Formation in Block A in Western Canada Sedimentary Basin [J]. Xinjiang Petroleum Geology, 2021, 42(4): 506-513. |
[13] | SU Xiaocen, GONG Lei, GAO Shuai, ZHOU Xinping, WANG Zhaosheng, LIU Bo. Characteristics and Quantitative Prediction of Fractures of Tight Reservoir in Chang 7 Member in Longdong Area [J]. Xinjiang Petroleum Geology, 2021, 42(2): 161-167. |
[14] | LUO Yu, WANG Yin, WANG Rong, YUAN Wen. Construction and Analysis of Pore-Fracture Network Model of Carbonate Rock [J]. Xinjiang Petroleum Geology, 2021, 42(1): 107-112. |
[15] | YU Tianxi, YUAN Feng, ZHOU Peiyao, HAO Lihua, ZOU Yushi, MA Xinfang, ZHANG Zhaopeng. Fracture Propagating Shapes in Gravel-Supported Conglomerate Reservoirs of Upper Wuerhe Formation on Manan Slope, Mahu Sag [J]. Xinjiang Petroleum Geology, 2021, 42(1): 53-62. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||