Xinjiang Petroleum Geology ›› 2025, Vol. 46 ›› Issue (3): 360-366.doi: 10.7657/XJPG20250313
• RESERVOIR ENGINEERING • Previous Articles Next Articles
YANG Hongnan1(), YUE Ping1(
), FAN Wei2a, ZHANG Wei2b, WANG Zhouhua1, LI Danchen2a
Received:
2024-12-05
Revised:
2024-12-19
Online:
2025-06-01
Published:
2025-06-13
CLC Number:
YANG Hongnan, YUE Ping, FAN Wei, ZHANG Wei, WANG Zhouhua, LI Danchen. CO2 Solubility Experiments and Prediction Model[J]. Xinjiang Petroleum Geology, 2025, 46(3): 360-366.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1.
Composition of degassed crude oil from a low-permeability reservoir in Changqing oilfield"
碳数 | 原油物质的量 分数/% | 碳数 | 原油物质的量 分数/% | 碳数 | 原油物质的量 分数/% |
---|---|---|---|---|---|
C1 | 0 | C13 | 3.49 | C25 | 0.71 |
C2 | 0 | C14 | 3.64 | C26 | 0.67 |
C3 | 0.33 | C15 | 3.26 | C27 | 0.63 |
C4 | 3.82 | C16 | 2.60 | C28 | 0.63 |
C5 | 6.46 | C17 | 2.33 | C29 | 0.51 |
C6 | 7.05 | C18 | 2.17 | C30 | 0.54 |
C7 | 10.62 | C19 | 1.90 | C31 | 0.58 |
C8 | 9.90 | C20 | 1.22 | C32 | 0.49 |
C9 | 8.49 | C21 | 1.13 | C33 | 0.36 |
C10 | 6.82 | C22 | 0.99 | C34 | 0.28 |
C11 | 5.73 | C23 | 0.94 | C35 | 0.44 |
C12 | 4.34 | C24 | 0.78 | C36+ | 6.04 |
[1] | 周守为, 朱军龙. 助力“碳达峰、碳中和”战略的路径探索[J]. 天然气工业, 2021, 41(12):1-8. |
ZHOU Shouwei, ZHU Junlong. Exploration of ways to helping“carbon peak and neutrality”strategy[J]. Natural Gas Industry, 2021, 41(12):1-8. | |
[2] | 邹才能, 薛华庆, 熊波, 等. “碳中和”的内涵、创新与愿景[J]. 天然气工业, 2021, 41(8):46-57. |
ZOU Caineng, XUE Huaqing, XIONG Bo, et al. Connotation,innovation and vision of“carbon neutral”[J]. Natural Gas Industry, 2021, 41(8):46-57. | |
[3] |
袁士义, 马德胜, 李军诗, 等. 二氧化碳捕集、驱油与埋存产业化进展及前景展望[J]. 石油勘探与开发, 2022, 49(4):828-834.
doi: 10.11698/PED.20220212 |
YUAN Shiyi, MA Desheng, LI Junshi, et al. Progress and prospects of carbon dioxide capture,EOR-utilization and storage industrialization[J]. Petroleum Exploration and Development, 2022, 49(4):828-834. | |
[4] | YUE Ping, LIU Feng, YANG Kai, et al. Micro-displacement and storage mechanism of CO2 in tight sandstone reservoirs based on CT scanning[J]. Energies, 2022, 15(17):1-16. |
[5] | YUE Ping, ZHANG Rujie, SHENG J J, et al. Study on the influential factors of CO2 storage in low permeability reservoir[J]. Energies, 2022, 15(1):1-10. |
[6] | LIU Feng, SHEN Jiawei, YUE Ping, et al. Experimental and numerical simulation analysis of factors affecting CO2 geological storage and enhanced oil recovery in extra-low permeability[J]. Energy & fuels, 2023, 20:15855-15866. |
[7] | 苏金长, 刘斌, 李儒广. CCUS-EOR过程中油气体系相间传质特征[J]. 新疆石油地质, 2024, 45(5):590-594. |
SU Jinchang, LIU Bin, LI Ruguang. Interphase mass transfer in the petroleum system during CCUS-EOR process[J]. Xinjiang Petroleum Geology, 2024, 45(5):590-594. | |
[8] | 汤勇, 刘梦云, 秦佳正, 等. 基于物质的量平衡的气藏CO2埋存潜力评估方法[J]. 石油钻采工艺, 2023, 45(2):197-202. |
TANG Yong, LIU Mengyun, QIN Jiazheng, et al. A evaluation method of CO2 sequestration potential in gas reservoirs based on mole balance[J]. Oil Drilling & Production Technology, 2023, 45(2):197-202. | |
[9] | 宋平, 崔晨光, 张记刚, 等. 玛湖凹陷上乌尔禾组强敏感油藏CO2同步吞吐试验[J]. 新疆石油地质, 2024, 45(3):355-361. |
SONG Ping, CUI Chenguang, ZHANG Jigang, et al. Simultaneous CO2 huff-n-puff test in highly sensitive reservoirs in upper Wuerhe formation,Mahu sag[J]. Xinjiang Petroleum Geology, 2024, 45(3):355-361. | |
[10] | 王春兰, 王毅杰, 刘文臣, 等. 溶气原油CO2溶解度预测模型[J]. 石油与天然气化工, 2024, 53(4):36-43. |
WANG Chunlan, WANG Yijie, LIU Wenchen, et al. Prediction model of carbon dioxide solubility in crude oil[J]. Chemical Engineering of Oil & Gas, 2024, 53(4):36-43. | |
[11] | 侯大力, 罗平亚, 王长权, 等. 高温高压下CO2在水中溶解度实验及理论模型[J]. 吉林大学学报(地球科学版), 2015, 45(2):564-572. |
HOU Dali, LUO Pingya, WANG Changquan, et al. Experimental research and theoretical model for CO2 solubility in water under high temperature and high pressure[J]. Journal of Jilin University(Earth Science Edition), 2015, 45(2):564-572. | |
[12] | 金旸钧, 陈乃安, 盛溢, 等. 地质封存条件下CO2在模拟盐水层溶液中的溶解度研究[J]. 油气藏评价与开发, 2019, 9(3):77-81. |
JIN Yangjun, CHEN Nai’an, SHENG Yi, et al. Study on the solubility of CO2 in simulated saline solution under geological storage condition[J]. Reservoir Evaluation and Development, 2019, 9(3):77-81. | |
[13] | KAVOUSI A, TORABI F, CHAN C W, et al. Experimental measurement and parametric study of CO2 solubility and molecular diffusivity in heavy crude oil systems[J]. Fluid Phase Equilibria, 2014, 371:57-66. |
[14] | DUAN Zhenhao, SUN Rui. An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar[J]. Chemical Geology, 2003, 193:257-271. |
[15] | AHMADI P, CHAPOY A. CO2 solubility in formation water under sequestration conditions[J]. Fluid Phase Equilibria, 2018, 463:80-90. |
[16] | 薛海涛, 卢双舫, 付晓泰. 甲烷、二氧化碳和氮气在油相中溶解度的预测模型[J]. 石油与天然气地质, 2005, 26(4):444-449. |
XUE Haitao, LU Shuangfang, FU Xiaotai. Forecasting model of solubility of CH4,CO2 and N2 in crude oil[J]. Oil & Gas Geology, 2005, 26(4):444-449. | |
[17] | 李靖. 高温高压高含CO2天然气在地层水中溶解度理论研究[D]. 成都: 西南石油大学, 2017. |
LI Jing. Theoretical study on solubility of high CO2 content natural gas in formation water at high temperature and high pressure[D]. Chengdu: Southwest Petroleum University, 2017. | |
[18] | 王一丁. 分子动力学模拟H2、N2和CO2在水和苯中溶解度的对比研究[D]. 吉林: 吉林大学, 2024. |
WANG Yiding. Comparative study of the solubility of H2,N2 and CO2 in water and benzene using molecular dynamics simulations[D]. Jilin: Jilin University, 2024. | |
[19] | ROSTAMI A, ARABLOO M, KAMARI A, et al. Modeling of CO2 solubility in crude oil during carbon dioxide enhanced oil recovery using gene expression programming[J]. Fuel, 2017, 210:768-782. |
[20] | 龙震宇, 王长权, 石立红, 等. 基于KRR优化算法的油水系统中CO2溶解度模型[J]. 吉林大学学报(地球科学版), 2022, 52(1):194-201. |
LONG Zhenyu, WANG Changquan, SHI Lihong, et al. CO2 solubility model of oil-water system based on KRR optimization algorithm[J]. Journal of Jilin University(Earth Science Edition), 2022, 52(1):194-201. | |
[21] | 龙震宇, 王长权, 石立红, 等. 基于核岭回归算法的地层水中CO2溶解度模型研究[J]. 西安石油大学学报(自然科学版), 2023, 38(1):95-101. |
LONG Zhenyu, WANG Changquan, SHI Lihong, et al. Study on CO2 solubility model in formation water based on kernel ridge regression algorithm[J]. Journal of Xi’an Shiyou University (Natural Science Edition), 2023, 38(1):95-101. | |
[22] | 严巡, 王长权, 袁肖肖, 等. 利用BP人工神经网络预测盐水中CO2的溶解度[J]. 中国科技论文, 2017, 12(24):2831-2834. |
YAN Xun, WANG Changquan, YUAN Xiaoxiao, et al. Prediction of solubility of CO2 in brine water by BP artificial neural network[J]. China Sciencepaper, 2017, 12(24):2831-2834. | |
[23] | 严巡, 孙敬, 刘德华, 等. 基于径向基神经网络的盐水中CO2溶解度模型[J]. 数学的实践与认识, 2019, 49(18):147-152. |
YAN Xun, SUN Jing, LIU Dehua, et al. Prediction of dissolution of CO2 in brine based on RBF neural network[J]. Mathematics in Practice and Theory, 2019, 49(18):147-152. | |
[24] | 卞小强, 熊伟, 蔺嘉昊, 等. 基于GE混合规则的统计缔合流体方程预测CO2在水中的溶解度[J]. 石油化工, 2019, 48(10):1035-1039. |
BIAN Xiaoqiang, XIONG Wei, LIN Jiahao, et al. Prediction of the solubility of carbon dioxide in water using statistical associating fluid equation of state based on the GE mixing rule[J]. Petrochemical Technology, 2019, 48(10):1035-1039. | |
[25] |
周建堂, 康丽侠, 杨立国, 等. 基于GE混合规则的SRK-CPA状态方程预测CO2在地层水中的溶解度[J]. 石油化工, 2021, 50(12):1274-1279.
doi: 10.3969/j.issn.1000-8144.2021.12.007 |
ZHOU Jiantang, KANG Lixia, YANG Liguo, et al. Prediction of the solubility of CO2 in formation water using SRK-CPA equation based on GE mixing rule[J]. Petrochemical Technology, 2021, 50(12):1274-1279.
doi: 10.3969/j.issn.1000-8144.2021.12.007 |
|
[26] | 李曼平, 李玉杰, 杨金峰, 等. 黄3区CO2驱技术研究与现场试验[J]. 石油化工应用, 2020, 39(5):71-75. |
LI Manping, LI Yujie, YANG Jinfeng, et al. Research and on-site testing of CO2 flooding technology in Huang-3 area[J]. Petrochemical Industry Application, 2020, 39(5):71-75. | |
[27] | 魏鸿坤, 王健, 王丹翎, 等. 高盐低渗透油藏CO2泡沫微观尺度耐盐性及调驱效果[J]. 新疆石油地质, 2024, 45(6):703-710. |
WEI Hongkun, WANG Jian, WANG Danling, et al. Microscale salt tolerance and profile control of CO2 foam in high-salinity,low-permeability reservoirs[J]. Xinjiang Petroleum Geology, 2024, 45(6):703-710. | |
[28] | CHANG Yih-bor, COATS BK, NOLEN JS. A compositional model for CO2 floods including CO2 solubility in water[C]. Texas:SPE Permian Basin Oil & Gas Recovery Conference, 1998. |
[29] | 宁华中. CO2溶解度计算模型及测试方法研究[D]. 成都: 西南石油大学, 2016. |
NING Huazhong. Research on the calculation model and testing method of CO2 solubility[D]. Chengdu: Southwest Petroleum University, 2016. | |
[30] | MEHROTRA A K, PATIENCE G S, SVRCEK W Y. Calculation of gas solubility in Wabasca bitumen[J]. Journal of Canadian Petroleum Technology, 1989, 28(3):81-83. |
[31] | CHUNG F T H, JONES R A, BURCHFIELD T E. Recovery of viscous oil under high pressure by CO2 displacement:A laboratory study[C]. Tianjin:SPE Society of Petroleum Engineers, 1988. |
[1] | QI Hongyan, WANG Zhenlin, ZHANG Yanning, LIN Jingqi, HU Xuan, SU Jing, XU Rui, CAO Zhifeng. Classification of Sweet Spots in Shale Oil Reservoir of Lucaogou Formation in Jimsar Sag,Jurggar Basin [J]. Xinjiang Petroleum Geology, 2025, 46(2): 127-135. |
[2] | WAN Tao, ZHANG Jing, DONG Yan. Microscopic Oil Mobility in Tight Conglomerate Reservoirs Under Different Development Modes, Mahu Sag [J]. Xinjiang Petroleum Geology, 2024, 45(3): 327-333. |
[3] | QI Yuan, HAN Dongwei, DU Yinyu, ZHOU Weijun. Genesis of Low-Resistivity Reservoirs in Sangonghe Formation,Mahu Sag [J]. Xinjiang Petroleum Geology, 2023, 44(2): 151-160. |
[4] | GUO Yunfei, LIU Huiqing, LIU Renjie, ZHENG Wei, DONG Xiaohu, WANG Wuchao. Comprehensive Evaluation on Steam Chamber Position and Production Prediction of SAGD in Heavy Oil Reservoirs [J]. Xinjiang Petroleum Geology, 2022, 43(zk(English)): 143-150. |
[5] | GUO Yunfei, LIU Huiqing, LIU Renjie, ZHENG Wei, DONG Xiaohu, WANG Wuchao. Comprehensive Evaluation on Steam Chamber Location and Production Prediction of SAGD in Heavy Oil Reservoirs [J]. Xinjiang Petroleum Geology, 2022, 43(4): 484-490. |
[6] | DENG Changsheng, ZHANG Yi, XIE Xiaofei, MI Weiwei, QIANG Juan, SONG Jiaxuan. Comprehensive Prediction Model of Total Gas Content in the Shale of Yanchang Formation in Yanchang Petroleum Exploration Area [J]. Xinjiang Petroleum Geology, 2020, 41(zk(English)): 41-51. |
[7] | ZHANG Hua, KANG Jilun, WANG Xinggang, LI Hongwei, JIA Xueli, ZHOU Yadong. Characteristics and Genesis of Low Oil-Saturation Reservoirs in Taibei Sag, Tuha Basin [J]. Xinjiang Petroleum Geology, 2020, 41(zk(English)): 84-91. |
[8] | ZHANG Hua, KANG Jilun, WANG Xinggang, LI Hongwei, JIA Xueli, ZHOU Yadong. Characteristics and Genesis of Low Oil-Saturation Reservoirs in Taibei Sag, Tuha Basin [J]. Xinjiang Petroleum Geology, 2020, 41(6): 685-691. |
[9] | REN Peng1, WANG Weifeng1, CHEN Gangqiang2. Characteristics and Genesis of Low Oil-Saturation Reservoir in the First Member of Hutubihe Formation in Wellblock Lu-9, Luliang Oilfield [J]. , 2018, 39(3): 1-1. |
[10] | FU Tiantian, LIU Jie, LIAO Ruiquan. Study on Water Holdup Prediction Model for Oil-Water Two-Phase Pipe Flow [J]. , 2017, 38(6): 1-1. |
[11] | REN Hongmei1,2, WANG Ning1, ZENG Qingqiao1, CHAI Xuefeng1, WANG Yuting1, HUANG Wei1. A Water Cut Prediction Model for Movable-Gel Profile Control and Flooding at High Water Cut Stage [J]. , 2017, 38(4): 1-1. |
[12] | LIU Peng1, LIU Pengcheng1, WANG Wenhuan2, XIA Jing2, JIAO Yuwei2, LI Baozhu2. Establishment and Application of A New Combined Solution Model for Water Cut Prediction [J]. , 2017, 38(3): 1-1. |
[13] | CHEN Yuanqian, TANG Wei. Review of Lee’s Discovery Process Model for Petroleum Resources and Establishment of Prediction Model [J]. , 2016, 37(4): 1-1. |
[14] | XUE JiankangWANG YudouWANG DianshengZHOU WeiWANG Xueying. Impact of Sand Grains on Reservoir Permeability Based on Digital Cores [J]. , 2016, 37(4): 1-1. |
[15] | FENG Yuan1, YANG Weiwei1, LIU Yicang2, WANG Ye1, JIAO Tingkui1, ZHANG Haibo1. Analysis on Causes of Reservoir Resistivity Differences of Chang81Reservoir in Zhenbei Oilfield, Ordos Basin [J]. , 2015, 36(5): 1-1. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||