新疆石油地质 ›› 2023, Vol. 44 ›› Issue (4): 485-496.doi: 10.7657/XJPG20230414

• 应用技术 • 上一篇    下一篇

中—低成熟度页岩油原位转化对储集层的改造能力

韦自健1a,1b(), 盛家平1a,1b,2(), 张潇1b,1c,1d,1e   

  1. 1.中国石油大学(北京) a.非常规油气科学技术研究院;b.油气资源与探测国家重点实验室;c.理学院;d.煤层气研究中心;e.油气光学探测技术北京市重点实验室,北京 102249
    2.德克萨斯理工大学Bob L. Herd石油工程系,美国德克萨斯州,拉伯克 43111
  • 收稿日期:2022-10-02 修回日期:2022-12-07 出版日期:2023-08-01 发布日期:2023-08-01
  • 通讯作者: 盛家平(1962-),男,江苏丹阳人,教授,博士,油气田开发,(Tel)15911146094(E-mail)shengjiaping@cup.edu.cn
  • 作者简介:韦自健(1994-),男,山东东营人,博士研究生,油气田开发,(Tel)18810362967(E-mail)weizijianupc@163.com
  • 基金资助:
    国家自然科学基金(51974334)

Stimulation Capability of Low-Medium Maturity Shale Oil Reservoir During In-Situ Conversion

WEI Zijian1a,1b(), SHENG Jiaping1a,1b,2(), ZHANG Xiao1b,1c,1d,1e   

  1. 1. China University of Petroleum (Beijing), a.Unconventional Petroleum Institute; b.State Key Laboratory of Oil and Gas Resources and Detection; c.College of Science; d.Coalbed Methane Research Center; e.Beijing Key Laboratory of Oil and Gas Optical Detection Technology, Beijing 102249, China
    2. Bob L. Herd Department of Petroleum Engineering, Texas Tech University, Lubbock, Texas 43111, USA
  • Received:2022-10-02 Revised:2022-12-07 Online:2023-08-01 Published:2023-08-01

摘要:

中国中—低成熟度页岩油资源丰富,原位转化潜力巨大。为评价中—低成熟度页岩油原位转化对储集层的改造能力,对鄂尔多斯盆地延长组长7段和准噶尔盆地吉木萨尔凹陷芦草沟组2种典型中—低成熟度页岩开展了原位加热实验。利用核磁共振测试、立式光学显微镜观测、计算机断层扫描和脉冲衰减气体渗透率测量等,实时监测了原位转化中纳米孔隙、热解裂缝以及孔隙度和渗透率在高温高压下的动态变化。干酪根热解引起的热解裂缝与生烃增压效应,是微观结构和储集层物性显著改善的关键。当温度超过400 ℃的阈值后,随着干酪根热解和烃类热膨胀,页岩内部裂缝网络的延伸度、密度、复杂性和连通性均显著提高,大量直径在2~50 nm的次生孔隙占据孔隙结构的主导地位。原位应力下,2种页岩孔隙度可分别增加至3.65倍和2.73倍,渗透率可分别增加至624.09倍和418.37倍。渗透率在高温阶段比低温阶段表现出更强的应力敏感性。原位应力越低,干酪根含量越高的页岩储集层,原位转化的改造能力越高,储集层热破裂和热增渗能力也越高。

关键词: 中—低成熟度页岩油, 原位转化, 储集层改造, 干酪根热解, 生烃增压, 应力敏性, 热破裂, 热增渗

Abstract:

In China, the abundant low-medium maturity shale oil resources present a huge potential for in-situ conversion. To evaluate the stimulation capability of low-medium maturity shale oil reservoir during in-situ conversion, in-situ heating experiments were conducted on the typical low-medium maturity shales from Chang 7 member of Yanchang formation in Ordos basin and Lucaogou formation of Jimsar sag in Junggar basin. By using techniques such as nuclear magnetic resonance testing, vertical optical microscopy observation, computerized tomography scanning, and pulse decay gas permeability measurement, the dynamic changes in nano-scale pores, thermal fractures, porosity and permeability under high-temperature and high-pressure conditions during in-situ conversion were monitored in a real-time manner. The kerogen pyrolysis-induced fractures and the hydrocarbon generation pressurization effect are key factors for significantly improving the microstructure and reservoir properties. Once the temperature exceeds the threshold (400°C), the extension, density, complexity and connectivity of fractures within the shale significantly increase due to kerogen pyrolysis and thermal expansion of hydrocarbons. Secondary pores with diameters ranging from 2 to 50 nm become dominant in the pore structure. Under in-situ stress, the porosities of the two types of shale can be increased by 3.65 and 2.73 times, respectively, while the permeability can be increased by 624.09 and 418.37 times, respectively. Permeability is more stress-sensitive in the high-temperature stage than in the low-temperature stage. Shale reservoir with lower in-situ stress and higher kerogen content exhibit higher stimulation capability and higher thermal fracturing and thermal permeability enhancement capabilities during in-situ conversion.

Key words: low-medium maturity shale oil, in-situ conversion, reservoir stimulation, kerogen pyrolysis, hydrocarbon generation pressurization, stress sensitivity, thermal fracturing, thermal permeability enhancement

中图分类号: