新疆石油地质 ›› 2023, Vol. 44 ›› Issue (5): 583-591.doi: 10.7657/XJPG20230510

• 油藏工程 • 上一篇    下一篇

碳酸盐岩裂缝-孔隙型储集层水侵特征及残余气分布规律

谢鹏1(), 陈鹏羽2, 赵海龙3, 徐建亭4   

  1. 1.中国石油 川庆钻探工程有限公司 国际工程公司,成都 610000
    2.中国石油 勘探开发研究院,北京 100083
    3.中国石油大学(华东) 石油工程学院,山东 青岛 266580
    4.中石油阿姆河天然气勘探开发(北京)有限公司,北京 100034
  • 收稿日期:2022-12-05 修回日期:2023-03-17 出版日期:2023-10-01 发布日期:2023-09-25
  • 作者简介:谢鹏(1988-),男,四川内江人,工程师,硕士,油气田开发,(Tel)18160017512(E-mail)xie89peng@163.com
  • 基金资助:
    中国石油前瞻性基础性技术攻关项目(2021DJ3301);山东省自然科学基金青年基金(ZR2021QE168)

Water Invasion Characteristics and Residual Gas Distribution in Fractured-Porous Carbonate Reservoirs

XIE Peng1(), CHEN Pengyu2, ZHAO Hailong3, Xu Jianting4   

  1. 1. International Engineering Company, Chuanqing Drilling Engineering Co., Ltd., CNPC, Chengdu, Sichuan 610000, China
    2. Research Institute of Petroleum Exploration and Development, PetroChina, Beijing 100083, China
    3. School of Petroleum Engineering, China University of Petroleum, Qingdao, Shandong 266580, China
    4. PetroChina Amu Darya Gas Exploration and Development (Beijing) Co., Ltd., Beijing 100034,China
  • Received:2022-12-05 Revised:2023-03-17 Online:2023-10-01 Published:2023-09-25

摘要:

为解决碳酸盐岩裂缝-孔隙型边底水气藏在开采过程中易发生气井水窜的问题,利用可视化微观模型实验和高温高压在线核磁共振检测系统,开展水侵机理模拟实验,研究残余气分布规律;以脉冲序列测试得到T2图谱,表征侵入水分布特征。结果表明,孔喉半径比、配位数和裂缝宽度对水侵及残余气分布影响显著,孔隙型储集层侵入水先进入中—大孔隙,后进入小孔隙;裂缝-孔隙型储集层中裂缝的分布对水侵方式存在影响,侵入水进入裂缝后,可以通过裂缝进入中—大孔隙中。孔隙型储集层水淹后,37.7%的残余气存在于小孔隙中,62.3%的残余气存在于中—大孔隙中;裂缝-孔隙型储集层水淹后裂缝中的残余气较少,小孔隙中的残余气占4.8%~26.8%,中—大孔隙中的残余气占69.2%~94.7%,且小孔隙中的残余气难以被动用。以中—大孔隙水侵比例为目标函数评价残余气饱和度指标,主控因素为裂缝贯穿程度、水体倍数、裂缝宽度和采气速度。应在裂缝发育区优选井轨迹,避免钻遇沟通边底水的裂缝,同时优化气井配产,延缓气井见水时间;气井出水后适当降低产气速度,促使侵入水进入中—大孔隙,减少残余气在中—大孔隙中的分布,提高天然气采收率。

关键词: 碳酸盐岩, 气藏, 裂缝-孔隙型储集层, 核磁共振, 水侵特征, 残余气分布, 采气速度, 提高采收率

Abstract:

Water channeling often occurs in gas wells during the production of fractured-porous carbonate gas reservoirs with edge/bottom water. A simulation experiment on water invasion mechanism was performed by using a visualized microscopic model and under the formation conditions simulated by the high-temperature high-pressure online nuclear magnetic resonance detection system, to study the distribution of residual gas. The distribution of intrusive water was characterized by the T2 spectrum obtained from pulse sequence testing. The results show that the pore-throat ratio, coordination number, and fracture width have significant impacts on water invasion and residual gas distribution. In porous reservoirs, invasion water first enters large pores and then small pores. In fractured-porous reservoirs, where the distribution of fractures has an influence on the water invasion mode, intrusive water enters the fractures and then the medium-large pores. In water-invaded porous reservoirs, 37.7% of the residual gas exists in small pores, and 62.3% in large pores. In water-invaded fractured-porous reservoirs, a little residual gas is in fractures, 4.8%-26.8% of the residual gas in small pores (where the residual gas is difficult to recover), and 94.7%-69.2% in medium-large pores. The residual gas saturation index was evaluated with the water invasion proportion in medium-large pores as an objective function, and the main controlling factors include fracture penetration degree, water volume ratio, fracture width and gas production rate. The well trajectory should be optimized in the fracture zones and kept away from the fractures that communicate with edge/bottom water. Furthermore, well production rate should be optimized to delay water breakthrough. After water breakthrough in gas wells, the gas production rate should be appropriately reduced to drive intrusive water into medium-large pores and reduce residual gas in the medium-large pores, thus enhancing the gas recovery.

Key words: carbonate rock, gas reservoir, fractured-porous reservoir, nuclear magnetic resonance, water invasion characteristic, residual gas distribution, gas production rate, EOR

中图分类号: