新疆石油地质 ›› 2024, Vol. 45 ›› Issue (6): 671-679.doi: 10.7657/XJPG20240605
李云鹏1(), 林学春1, 余星辰2, 康志宏2(
), 李佩敬1, 王亚静1, 祁爱平1
收稿日期:
2024-04-25
修回日期:
2024-06-04
出版日期:
2024-12-01
发布日期:
2024-11-26
通讯作者:
康志宏(1966-),男,辽宁北镇人,教授,博士生导师,石油地质,(Tel)010-82322290(Email)作者简介:
李云鹏(1978-),男,甘肃通渭人,高级工程师,硕士,油田开发地质,(Tel)022-63963700(Email)基金资助:
LI Yunpeng1(), LIN Xuechun1, YU Xingchen2, KANG Zhihong2(
), LI Peijing1, WANG Yajing1, QI Aiping1
Received:
2024-04-25
Revised:
2024-06-04
Online:
2024-12-01
Published:
2024-11-26
摘要:
小—微裂缝作为王徐庄油田沙河街组薄层生物石灰岩重要的储集空间之一,因缺乏有效的测量方法和表征技术,导致其研究较为困难,影响了油气开发中流体流动能力的预测。综合岩心、岩石薄片、CT扫描、地层微电阻率扫描成像测井、常规测井等资料,对小—微裂缝的发育情况开展研究。采用PSO-BP神经网络预测研究区裂缝性储集层发育情况及分布特征,提出了离散裂缝网络模拟方法,模拟了小—微裂缝的空间展布。结果表明:小—微裂缝发育的生物石灰岩深、浅电阻率幅差较大;研究区生物石灰岩小—微裂缝较为发育,对改善储集层物性和注水受效方向有重要意义;小—微裂缝受控于断裂带和生物石灰岩沉积微相。油藏数值模拟证实,融合小—微裂缝介质的双孔双渗模型的油水关系动态拟合效果更好。
中图分类号:
李云鹏, 林学春, 余星辰, 康志宏, 李佩敬, 王亚静, 祁爱平. 王徐庄油田薄层生物石灰岩小—微裂缝识别及建模[J]. 新疆石油地质, 2024, 45(6): 671-679.
LI Yunpeng, LIN Xuechun, YU Xingchen, KANG Zhihong, LI Peijing, WANG Yajing, QI Aiping. Identification and Modeling of Micro-Minor Fractures in Thin Biolimestones in Wangxuzhuang Oilfield[J]. Xinjiang Petroleum Geology, 2024, 45(6): 671-679.
图1
王徐庄油田沙一下亚段生物石灰岩储集层构造裂缝特征 a—高角度裂缝,岐643井,2 066.99—2 067.09 m;b—高角度裂缝,岐634井,2 181.63 m;c—高角度裂缝,岐634井,2 188.77 m;d—高角度裂缝,岐634井,2 188.10 m;e—高角度裂缝,岐634井,2 197.84—2 198.04 m;f—高角度裂缝,岐634井,2 194.55—2 194.95 m;g—直立裂缝,岐北6井,2 616.77—2 616.98 m;h—直立裂缝,岐北6井,2 610.08—2 610.59 m;i—直立裂缝,岐北6井,2 617.08—2 617.53 m。"
表1
王徐庄油田沙一下亚段岩心定向分析结果"
井名 | 地理坐标下黏滞剩磁 相对标志线的偏角/(°) | 地理坐标下标志线方位角/ (°) | 误差置信圆/ (°) | 裂缝产状 |
---|---|---|---|---|
岐606井 | 312.9 | 47.1 | 10.1 | 走向为60°,2条直立裂缝 |
305.4 | 54.6 | 10.0 | ||
282.0 | 78.0 | 10.1 | ||
岐607井 | 306.2 | 53.8 | 14.6 | 走向为60°,高角度裂缝 |
302.8 | 57.2 | 8.6 | ||
293.0 | 67.0 | 13.4 | ||
岐608井 | 283.9 | 76.1 | 4.7 | 走向为78°,2条低角度裂缝 |
281.5 | 78.5 | 6.9 | ||
280.3 | 79.7 | 10.7 | ||
岐609井 | 278.0 | 82.0 | 4.0 | 走向为83°,直立裂缝 |
276.0 | 84.0 | 5.8 | ||
277.0 | 83.0 | 4.0 | ||
岐613井 | 245.4 | 114.6 | 10.5 | 走向为117°,2条直立裂缝 |
243.3 | 116.7 | 8.3 | ||
240.5 | 119.5 | 10.0 | ||
岐630井 | 288.1 | 71.9 | 12.3 | 走向为74°,高角度裂缝 |
285.1 | 74.9 | 8.6 | ||
284.7 | 75.3 | 7.9 | ||
岐634井 | 260.0 | 100.0 | 6.9 | 走向为100°,高角度裂缝 |
258.3 | 101.7 | 8.3 | ||
261.6 | 98.4 | 10.9 | ||
岐635井 | 272.3 | 87.7 | 9.4 | 走向为86°,直立裂缝 |
273.2 | 86.8 | 9.7 | ||
276.5 | 83.5 | 11.3 | ||
岐637井 | 99.0 | 261.0 | 6.5 | 走向为257°,直立裂缝 |
103.8 | 256.2 | 11.1 | ||
107.5 | 252.5 | 5.7 | ||
岐643井 | 308.2 | 51.8 | 3.0 | 走向为37°,高角度裂缝 |
335.7 | 24.3 | 8.1 | ||
325.0 | 35.0 | 10.4 | ||
岐646井 | 261.3 | 98.7 | 11.6 | 走向为83°,高角度裂缝 |
279.3 | 80.7 | 8.8 | ||
291.7 | 68.3 | 9.0 | ||
岐647井 | 99.0 | 261.0 | 6.5 | 走向为257°,高角度裂缝 |
103.8 | 256.2 | 11.1 | ||
107.5 | 252.5 | 5.7 | ||
岐648井 | 84.8 | 275.2 | 8.6 | 走向为265°,直立裂缝 |
95.1 | 264.9 | 11.3 | ||
104.6 | 255.4 | 6.3 | ||
岐649井 | 116.4 | 243.6 | 10.4 | 走向为252°,水平裂缝 |
105.1 | 254.9 | 6.6 | ||
103.9 | 256.1 | 10.2 | ||
岐652井 | 130.0 | 260.0 | 4.0 | 走向为261°,2条高角度裂缝 |
138.0 | 252.0 | 5.8 | ||
119.6 | 270.4 | 4.0 | ||
岐3井 | 94.8 | 265.2 | 15.2 | 走向为269°,2条直立裂缝 |
52.4 | 307.6 | 17.1 | ||
87.3 | 272.7 | 11.4 | ||
岐5井 | 199.2 | 160.8 | 1.7 | 走向为160°,高角度裂缝 |
199.2 | 160.8 | 5.2 | ||
201.0 | 159.0 | 1.8 |
[1] | 吴勇, 马水平, 黄晓娣, 等. 王徐庄油田碳酸盐岩储层裂缝展布特征[J]. 特种油气藏, 2008, 15(增刊):46-48. |
WU Yong, MA Shuiping, HUANG Xiaodi, et al. Characteristics of fracture spreading in carbonate reservoirs of Wangxuzhuang oilfield[J]. Special Oil & Gas Reservoirs, 2008,15 (Supp.) :46-48. | |
[2] | 张蕾. 王徐庄油田裂缝性生物灰岩油藏深部调堵、调驱技术研究[D]. 西安: 西安石油大学, 2017. |
ZHANG Lei. Study on deep water plugging and profile control in fractured biogenic limestone reservoir in the Wangxu oilfield[D]. Xi’an: Xi’an Shiyou University, 2017. | |
[3] | KRANZ R L. Microcracks in rocks:A review[J]. Tectonophysics, 1983, 100(1/2/3):449-480. |
[4] | ANDERS M H, LAUBACH S E, SCHOLZ C H. Microfractures:A review[J]. Journal of Structural Geology, 2014, 69:377-394. |
[5] | 杨远江, 杨俊生, 臧苡澄, 等. 王徐庄油田歧646-2井沙一下碳酸盐岩储层特征研究[J]. 地球科学前沿, 2019, 9(10):884-897. |
YANG Yuanjiang, YANG Junsheng, ZANG Yicheng, et al. Reservoir characteristics of carbonate rocks in Well Qi646-2 of Wangxuzhuang oilfield[J]. Advances in Geosciences, 2019, 9(10):884-897. | |
[6] | 刘平, 王志芳, 冯海燕, 等. 王徐庄油田沙一下亚段碳酸盐岩裂缝性储集层研究[J]. 录井工程, 2007, 18(2):69-73. |
LIU Ping, WANG Zhifang, FENG Haiyan, et al. Study on the fractured reservoir of the carbonate rock in Sha 1 lower sub-interval in Wangxuzhuang oilfield[J]. Mud Logging Engineering, 2007, 18(2):69-73. | |
[7] | LEI Qinghua, LATHAM J P, TSANG C F. The use of discrete fracture networks for modelling coupled geomechanical and hydrological behaviour of fractured rocks[J]. Computers and Geotechnics, 2017, 85:151-176. |
[8] | CAO Xiaoyan, GUO Shihui, LIN Juncong, et al. Online tracking of ants based on deep association metrics:Method,dataset and evaluation[J]. Pattern Recognition, 2020, 103:107233. |
[9] | PUDJI P, TAUFAN M, SESILIA N, et al. Identification and characterization of microfractures in carbonate samples[J]. Petroleum Exploration and Development, 2022, 49(2):415-427. |
[10] | 史从越, 薛秀凤, 张亚杰, 等. 王徐庄油田沙一下生物灰岩裂缝识别与研究[J]. 录井工程, 2004, 15(4):66-69. |
SHI Congyue, XUE Xiufeng, ZHANG Yajie, et al. Identification and study on the bio-limestone fracture of Wangxuzhuang oilfield[J]. Mud Logging Engineering, 2004, 15(4):66-69. | |
[11] | 唐宜家, 马天寿, 陈力力, 等. 基于二维裂缝网络数值模拟的干热岩储层热采效率评价[J]. 天然气工业, 2022, 42(4):94-106. |
TANG Yijia, MA Tianshou, CHEN Lili, et al. Evaluation on the heat extraction efficiency of hot dry rock reservoirs based on two-dimensional fracture network numerical simulation[J]. Natural Gas Industry, 2022, 42(4):94-106. | |
[12] | 杨丽娜, 许胜利, 魏莉, 等. 碳酸盐岩储层裂缝智能预测技术及其应用[J]. 大庆石油地质与开发, 2023, 42(4):131-138. |
YANG Lina, XU Shengli, WEI Li, et al. Intelligent prediction technique and its application for carbonate reservoir fractures[J]. Petroleum Geology & Oilfield Development in Daqing, 2023, 42(4):131-138. | |
[13] | 谢基海, 葛坤朋, 徐慧茹, 等. 古地磁学岩心定向方法回顾[J]. 地球物理学进展, 2020, 35(3):906-917. |
XIE Jihai, GE Kunpeng, XU Huiru, et al. Review of paleomagnetic core orientation method[J]. Progress in Geophysics, 2020, 35(3):906-917. | |
[14] | 史今雄, 赵向原, 潘仁芳, 等. 川中地区震旦系灯影组碳酸盐岩天然裂缝特征及其对气井产能影响[J]. 石油与天然气地质, 2023, 44(2):393-405. |
SHI Jinxiong, ZHAO Xiangyuan, PAN Renfang, et al. Characteristics of natural fractures in carbonate reservoirs and their impacts on well productivity in the Sinian Dengying formation,central Sichuan basin[J]. Oil & Gas Geology, 2023, 44(2):393-405. | |
[15] | 陈波, 赵海涛. 利用随机建模技术预测裂缝分布方向:以王徐庄油田为例[J]. 江汉石油学院学报, 2004, 26(4):42-45. |
CHEN Bo, ZHAO Haitao. Predicting fracture distributional direction by using stochastic modeling technique[J]. Journal of Jianghan Petroleum Institute, 2004, 26(4):42-45. | |
[16] | 唐军, 何泽, 申威, 等. 对标产能的碳酸盐岩储集层测井分类评价:以塔里木盆地托甫台地区一间房组为例[J]. 新疆石油地质, 2023, 44(1):112-118. |
TANG Jun, HE Ze, SHEN Wei, et al. Productivity-based classified logging evaluation of carbonate reservoirs:A case study on Yijianfang formation in Tuofutai area,Tarim basin[J]. Xinjiang Petroleum Geology, 2023, 44(1):112-118. | |
[17] | LIU Ruilin, LI Ningxi, FENG Qingfu, et al. Application of the triple porosity model in well-log effectiveness estimation of the carbonate reservoir in Tarim oilfield[J]. Journal of Petroleum Science and Engineering, 2009, 68 (1/2):40-46. |
[18] | 国景星, 杨少春, 闫建平. 测井地质学[M]. 北京: 石油工业出版社, 2021. |
GUO Jingxing, YANG Shaochun, YAN Jianping. Logging geology[M]. Beijing: Petroleum Industry Press, 2021. | |
[19] | 肖何, 张超谟, 苏向群. 应用测井资料定量识别碳酸盐岩沉积微相:以川东北元坝地区长兴组为例[J]. 科学技术与工程, 2020, 20(7):2573-2582. |
XIAO He, ZHANG Chaomo, SU Xiangqun. Quantitative discrimination of carbonate sedimentary microfacies by use of log data:Taking the Changxing formation in Yuanba region of northeastern Sichuan for example[J]. Science Technology and Engineering, 2020, 20(7):2573-2582. | |
[20] | RANGEL-GERMAN EDGAR R, KOVSCEK A R. Time-dependent matrix-fracture shape factors for partially and completely immersed fractures[J]. Journal of Petroleum Science and Engineering, 2006, 54 (3/4):149-163. |
[21] | 贾凌霄, 贾家磊, 张毅, 等. 改进BP神经网络在裂缝预测中的应用[J]. 工程地球物理学报, 2012, 9(3):301-305. |
JIA Lingxiao, JIA Jialei, ZHANG Yi, et al. Application of improved BP neural network to fracture prediction[J]. Chinese Journal of Engineering Geophysics, 2012, 9(3):301-305. | |
[22] | 蓝茜茜. 机器学习在碳酸盐岩储层测井评价中的应用[D]. 北京: 中国地质大学(北京), 2021. |
LAN Xixi. Well logging evaluation of carbonate reservoir using machine learning methods[D]. Beijing: China University of Geosciences (Beijing), 2021. | |
[23] | 娄高中, 谭毅. 基于PSO-BP神经网络的导水裂隙带高度预测[J]. 煤田地质与勘探, 2021, 49(4):198-204. |
LOU Gaozhong, TAN Yi. Prediction of the height of water flowing fractured zone based on PSO-BP neural network[J]. Coal Geology & Exploration, 2021, 49(4):198-204. | |
[24] | 蓝茜茜, 张逸伦, 康志宏. 基于样本优化的神经网络方法在储层裂缝识别中的应用[J]. 科学技术与工程, 2020, 20(21):8530-8536. |
LAN Xixi, ZHANG Yilun, KANG Zhihong. Application of neural network based on sample optimization in reservoir fracture identification[J]. Science Technology and Engineering, 2020, 20(21):8530-8536. | |
[25] | 蓝茜茜, 张逸伦, 康志宏, 等. 基于集成学习的碳酸盐岩储集体类型划分:以塔河油田T615井组为例[J]. 科学技术与工程, 2020, 20(18):7231-7238. |
LAN Xixi, ZHANG Yilun, KANG Zhihong, et al. Classification of carbonate reservoirs based on ensemble learning:A case study of T615 well group in Tahe oilfield[J]. Science Technology and Engineering, 2020, 20(18):7231-7238. | |
[26] | SMERAGLIA L, MERCURI M, TAVANI S, et al. 3D discrete fracture network (DFN) models of damage zone fluid corridors within a reservoir-scale normal fault in carbonates:Multiscale approach using field data and UAV imagery[J]. Marine and Petroleum Geology, 2021, 126:104902. |
[27] | 郎晓玲, 郭召杰. 基于DFN离散裂缝网络模型的裂缝性储层建模方法[J]. 北京大学学报(自然科学版), 2013, 49(6):964-972. |
LANG Xiaoling, GUO Zhaojie. Fractured reservoir modeling method based on discrete fracture network model[J]. Acta Scientiarum Naturalium(Universitatis Pekinensis), 2013, 49(6):964-972. | |
[28] | 胡浩浩, 鞠玮, 郭伟, 等. 川南海坝区块页岩气储层裂缝发育特征与预测[J]. 非常规油气, 2023, 10(1):61-68. |
HU Haohao, JU Wei, GUO Wei, et al. Development characteristics and prediction of natural fractures within shale gas reservoirs,Haiba block of southern Sichuan basin[J]. Unconventional Oil & Gas, 2023, 10(1):61-68. | |
[29] |
李晓梅, 张记刚, 陈超, 等. 准噶尔盆地西北缘玛2井区致密储层裂缝发育特征及定量预测[J]. 特种油气藏, 2022, 29(3):50-56.
doi: 10.3969/j.issn.1006-6535.2022.03.007 |
LI Xiaomei, ZHANG Jigang, CHEN Chao, et al. Fracture development characteristics and quantitative prediction of tight reservoirs in Well Block Ma 2,northwestern margin,Junggar basin[J]. Special Oil & Gas Reservoirs, 2022, 29(3):50-56. | |
[30] | 刘明, 李彦婧, 潘兰, 等. 南川地区页岩储层构造裂缝特征及其定量预测[J]. 非常规油气, 2023, 10(3):8-14. |
LIU Ming, LI Yanjing, PAN Lan, et al. Structural fracture characteristics and quantitative prediction of shale reservoir in Nanchuan area[J]. Unconventional Oil & Gas, 2023, 10(3):8-14. | |
[31] | 但玲玲, 史长林, 文佳涛, 等. 多信息融合裂缝建模技术在碳酸盐岩双重介质油藏开发中的应用[J]. 油气地质与采收率, 2022, 29(1):46-52. |
DAN Lingling, SHI Changlin, WEN Jiatao, et al. Application of multi-information fusion modeling technology for fractures in dual-medium carbonate reservoir[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(1):46-52. | |
[32] | 雷泽萱, 辛显康, 喻高明, 等. 基于数值模拟的油藏生产动态优化算法[J]. 新疆石油地质, 2022, 43(5):612-616. |
LEI Zexuan, XIN Xiankang, YU Gaoming, et al. Reservoir production performance optimization algorithm based on numerical simulation[J]. Xinjiang Petroleum Geology, 2022, 43(5):612-616. |
[1] | 丛岩. 源断盖配置油气聚集时期预测方法及其应用[J]. 新疆石油地质, 2024, 45(1): 13-18. |
[2] | 曹同锋, 高东华, 李占东, 王天杨, 姜峰. 柳赞油田多层砂岩优势渗流通道特征及喉道体积[J]. 新疆石油地质, 2024, 45(1): 53-57. |
[3] | 张辉, 鞠玮, 徐珂, 宁卫科, 尹国庆, 王志民, 于国栋. 库车坳陷博孜气藏超深致密砂岩储集层现今地应力预测[J]. 新疆石油地质, 2023, 44(2): 224-230. |
[4] | 潘丽燕, 阮东, 惠峰, 刘凯新, 张敏, 彭岩. 玛湖凹陷风城组薄互层分层压裂优化方法[J]. 新疆石油地质, 2022, 43(2): 221-226. |
[5] | 李鑫羽, 欧阳传湘, 杨博文, 赵鸿楠, 聂彬. 基于BP神经网络的黏土矿物预测模型[J]. 新疆石油地质, 2021, 42(5): 624-629. |
[6] | 姜蕾a,张云银a,林中凯b. 敏感属性融合技术预测深部薄互层砂岩——以临南地区沙三下亚段河道砂体为例[J]. , 2019, 40(6): 1-1. |
[7] | 赵冰. 利用核测井资料预测海相页岩储集层总有机碳含量[J]. , 2019, 40(4): 1-1. |
[8] | 邱隆伟1,2,杜双虎1,2,代莉3,张在鹏3,孙超4,辛也4. 孤北洼陷沙三段沉积特征及其控制因素[J]. , 2019, 40(2): 1-1. |
[9] | 于聪灵1a,蔡忠贤1,杨海军2,朱永峰2,王慧1. 基于BP神经网络预测轮古油田奥陶系碳酸盐岩油藏洞穴充填程度[J]. , 2018, 39(5): 1-1. |
[10] | 赵悦1,2,蔡进功2,雷天柱3,杨燕3,4. 泥质烃源岩中不同赋存状态有机质定量表征——以东营凹陷沙河街组为例[J]. , 2018, 39(4): 1-1. |
[11] | 王延章1,刘雅利2,朱永峰3,曹晓莉4,高飞5. 车镇凹陷郭局子洼陷北部陡坡带砂砾岩沉积序列[J]. , 2017, 38(6): 1-1. |
[12] | 高阳. 东营凹陷北部陡坡带沙四下亚段砂砾岩储集层物性下限[J]. , 2017, 38(5): 1-1. |
[13] | 操应长,王新桐,王艳忠,杨田,程鑫,王思佳. 临南洼陷江家店地区沙三下亚段储集层成岩流体演化[J]. , 2017, 38(2): 1-1. |
[14] | 梁官忠1,2,刘龙松1,张峰2,纪友亮1,吕亚辉2,李彦国2. 廊固凹陷大兴断裂带沙四—沙三段近岸水下扇沉积特征[J]. , 2017, 38(2): 1-1. |
[15] | 邱隆伟1,葛君1,师政2,杨勇强1,张晓丹3,王曼4. 惠民凹陷商河地区沙三上亚段低阻油层特征及控制因素[J]. , 2017, 38(1): 1-1. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||