新疆石油地质 ›› 2024, Vol. 45 ›› Issue (6): 671-679.doi: 10.7657/XJPG20240605

• 油气勘探 • 上一篇    下一篇

王徐庄油田薄层生物石灰岩小—微裂缝识别及建模

李云鹏1(), 林学春1, 余星辰2, 康志宏2(), 李佩敬1, 王亚静1, 祁爱平1   

  1. 1.中国石油 大港油田分公司 勘探开发研究院,天津 300457
    2.中国地质大学(北京) 能源学院,北京 100083
  • 收稿日期:2024-04-25 修回日期:2024-06-04 出版日期:2024-12-01 发布日期:2024-11-26
  • 通讯作者: 康志宏(1966-),男,辽宁北镇人,教授,博士生导师,石油地质,(Tel)010-82322290(Email)kangzh98@cugb.edu.cn
  • 作者简介:李云鹏(1978-),男,甘肃通渭人,高级工程师,硕士,油田开发地质,(Tel)022-63963700(Email)liypeng@petrochina.com.cn
  • 基金资助:
    国家自然科学基金企业创新发展联合基金(U19B6003)

Identification and Modeling of Micro-Minor Fractures in Thin Biolimestones in Wangxuzhuang Oilfield

LI Yunpeng1(), LIN Xuechun1, YU Xingchen2, KANG Zhihong2(), LI Peijing1, WANG Yajing1, QI Aiping1   

  1. 1. Research Institute of Exploration and Development, Dagang Oilfield Company, PetroChina, Tianjin 300457, China
    2. School of Energy, China University of Geosciences(Beijing), Beijing 100083, China
  • Received:2024-04-25 Revised:2024-06-04 Online:2024-12-01 Published:2024-11-26

摘要:

小—微裂缝作为王徐庄油田沙河街组薄层生物石灰岩重要的储集空间之一,因缺乏有效的测量方法和表征技术,导致其研究较为困难,影响了油气开发中流体流动能力的预测。综合岩心、岩石薄片、CT扫描、地层微电阻率扫描成像测井、常规测井等资料,对小—微裂缝的发育情况开展研究。采用PSO-BP神经网络预测研究区裂缝性储集层发育情况及分布特征,提出了离散裂缝网络模拟方法,模拟了小—微裂缝的空间展布。结果表明:小—微裂缝发育的生物石灰岩深、浅电阻率幅差较大;研究区生物石灰岩小—微裂缝较为发育,对改善储集层物性和注水受效方向有重要意义;小—微裂缝受控于断裂带和生物石灰岩沉积微相。油藏数值模拟证实,融合小—微裂缝介质的双孔双渗模型的油水关系动态拟合效果更好。

关键词: 王徐庄油田, 沙河街组, 生物石灰岩, 小—微裂缝, 粒子群优化算法, BP神经网络, 离散裂缝网络模型

Abstract:

Micro-minor fractures represent a key type of reservoir space in the thin biolimestones of the Shahejie formation in the Wangxuzhuang oilfield. Due to the lack of effective measurement methods and characterization techniques, it is challenging to understand these fractures, thereby hindering accurate prediction of fluid flow capacity during oil and gas development. By integrating the data of core samples, thin sections, CT scanning, formation micro-resistivity imaging (FMI) logging, and conventional logging, the development of micro-minor fractures was investigated. With a PSO-BP neural network, the fracture development and distribution in the fractured reservoirs of the study area were predicted. Then a discrete fracture network modeling approach was proposed to simulate the spatial distribution of these fractures. The results show that the biolimestone with developed micro-minor fractures exhibits significant amplitude differences between shallow and deep lateral resistivity readings. Micro-minor fractures are well developed in the biolimestones in the study area, which play a crucial role in improving reservoir physical properties and waterflood response directions. These fractures are controlled by fault zones and sedimentary microfacies of the biolimestone. Numerical simulation confirms that the dual-porosity dual-permeability model incorporating micro-minor fractures can provide a better fit for the dynamic behavior of oil-water relations.

Key words: Wangxuzhuang oilfield, Shahejie formation, biolimestone, micro-minor fracture, particle swarm optimization algorithm, BP neural network, discrete fracture network model

中图分类号: