[1] |
郑炀, 徐锦绣, 刘欢, 等. 基于随钻核磁测井的渗透率评价方法及其应用:以渤海锦州油田古近系沙河街组为例[J]. 中国海上油气, 2019, 31(2):69-75.
|
|
ZHENG Yang, XU Jinxiu, LIU Huan, et al. A permeability evaluation method based on NMR logging while drilling and its application:Taking Paleogene Shahejie formation in Jinzhou oilfield of Bohai Sea as an example[J]. China Offshore Oil and Gas, 2019, 31(2):69-75.
|
[2] |
吴勃翰. 致密砂岩储层孔隙结构评价方法及应用研究[D]. 北京: 中国石油大学(北京), 2022.
|
|
WU Bohan. Study on the evaluation and application of pore structure in tight sandstone reservoir[D]. Beijing: China University of Petroleum(Beijing), 2022.
|
[3] |
SHEN Bo, WU Dong, WANG Zhonghao. A new method for permeability estimation from conventional well logs in glutenite reservoirs[J]. Journal of Geophysics and Engineering, 2017, 14(5):1268-1274.
|
[4] |
李雄炎, 秦瑞宝, 曹景记, 等. 白云岩储层特征与渗透率评价方法:以伊拉克美索不达米亚盆地古近系为例[J]. 中国海上油气, 2024, 36(3):81-94.
|
|
LI Xiongyan, QIN Ruibao, CAO Jingji, et al. Dolomite reservoir characteristics and permeability evaluation methods:An example from the Paleogene,Mesopotamian Basin,Iraq[J]. China Offshore Oil and Gas, 2024, 36(3):81-94.
|
[5] |
刘土亮, 胡向阳, 袁伟, 等. 取心井渗透率数值模拟及精细评价方法研究[J]. 录井工程, 2023, 34(4):55-60.
|
|
LIU Tuliang, HU Xiangyang, YUAN Wei, et al. Research on numerical simulation and fine evaluation methods for permeability of cored wells[J]. Mud Logging Engineering, 2023, 34(4):55-60.
|
[6] |
汤翟, 吴勃翰, 吴一雄, 等. 海上低渗气藏储层分类及测井渗透率精细评价:以莺琼盆地DF13-A气田为例[J/OL]. 中国海上油气:1-12. [2025-03-10]. ttps://link.cnki.net/urlid/11.5339.TE.20250307.1443.002.
|
|
TANG DI, WU Bohan, WU Yixiong, et al. Reservoir classification and fine logging permeability evaluation of offshore low-permeability gas reservoirs:A case study of the DF13-A gas field,Yingqiong Basin[J/OL]. China Offshore Oil and Gas:1-12. [2025-03-10]. ttps://link.cnki.net/urlid/11.5339.TE.20250307.1443.002.
|
[7] |
TIMUR A. Pulsed nuclear magnetic resonance studies of porosity,movable fluid,and permeability of sandstones[J]. Journal of Petroleum Technology, 1969, 21(6):775-786.
|
[8] |
COATES G, DUMANOIR J L. A new approach to improved log-derived permeability[R]. SPWLA 14th Annual Logging Symposium, 1973.
|
[9] |
郭同政, 申富豪, 饶博, 等. 各向异性孔隙地层随钻声波测井理论模拟及应用[J]. 科学技术与工程, 2023, 23(28):11962-11971.
|
|
GUO Tongzheng, SHEN Fuhao, RAO Bo, et al. Theoretical simulation and application of acoustic logging while drilling in anisotropic porous formation[J]. Science Technology and Engineering, 2023, 23(28):11962-11971.
|
[10] |
李宁, 徐彬森, 武宏亮, 等. 人工智能在测井地层评价中的应用现状及前景[J]. 石油学报, 2021, 42(4):508-522.
|
|
LI Ning, XU Binsen, WU Hongliang, et al. Application status and prospects of artificial intelligence in well logging and formation evaluation[J]. Acta Petrolei Sinica, 2021, 42(4):508-522.
|
[11] |
JAMSHIDIAN M, HADIAN M, ZADEH M M, et al. Prediction of free flowing porosity and permeability based on conventional well logging data using artificial neural networks optimized by imperialist competitive algorithm:A case study in the South Pars gas field[J]. Journal of Natural Gas Science and Engineering, 2015, 24:89-98.
|
[12] |
ZHU Lingqi, ZHANG Chong, WEI Yang, et al. Permeability prediction of the tight sandstone reservoirs using hybrid intelligent algorithm and nuclear magnetic resonance logging data[J]. Arabian Journal for Science and Engineering, 2017, 42(4):1643-1654.
|
[13] |
赵军, 张涛, 何胜林, 等. 基于参数优选的储层渗透率深度置信网络模型预测初探[J]. 油气藏评价与开发, 2021, 11(4):577-585.
|
|
ZHAO Jun, ZHANG Tao, HE Shenglin, et al. Prediction of reservoir permeability by deep belief network based on optimized parameters[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(4):577-585.
|
[14] |
SEN S, ABIOUI M, GANGULI S S, et al. Petrophysical heterogeneity of the Early Cretaceous Alamein dolomite reservoir from North Razzak oil field,Egypt integrating well logs,core measurements,and machine learning approach[J]. Fuel, 2021, 306(15):21698.
|
[15] |
李宁, 王克文, 武宏亮, 等. 渗透率测井评价:现状及发展方向[J]. 石油科学通报, 2023, 8(4):432-444.
|
|
LI Ning, WANG Kewen, WU Hongliang, et al. Permeability logging evaluation:Current status and development directions[J]. Petroleum Science Bulletin, 2023, 8(4):432-444.
|
[16] |
CHEN Changhsu, LIN Zsayshing. A committee machine with empirical formulas for permeability prediction[J]. Computers & Geosciences, 2006, 32(4):485-496.
|
[17] |
BAI Yang, TAN Maojin, SHI Yujiang, et al. Regression committee machine and petrophysical model jointly driven parameters prediction from wireline logs in tight sandstone reservoirs[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:1-9.
|
[18] |
WU Bohan, XIE Ranhong, LIU Mi, et al. Novel method for predicting mercury injection capillary pressure curves of tight sandstone reservoirs using NMR T2 distributions[J]. Energy & Fuels, 2021, 35(19):15607-15617.
|
[19] |
吴克强, 裴健翔, 胡林, 等. 莺歌海盆地大—中型气田成藏模式及勘探方向[J]. 石油学报, 2023, 44(12):2200-2216.
|
|
WU Keqiang, PEI Jianxiang, HU Lin, et al. Accumulation model and exploration direction of medium-large gas fields in Yinggehai Basin[J]. Acta Petrolei Sinica, 2023, 44(12):2200-2216.
|
[20] |
李华, 杨朝强, 周伟, 等. 莺歌海盆地东方1-1气田中新统黄流组浅海多级海底扇形成机理及储层分布[J]. 石油与天然气地质, 2023, 44(2):429-440.
|
|
LI Hua, YANG Zhaoqiang, ZHOU Wei, et al. Genetic mechanism and reservoir distribution of shallow-marine multi-stepped submarine fans in the Miocene Huangliu formation of Dongfang 1-1 gas field,Yinggehai Basin[J]. Oil & Gas Geology, 2023, 44(2):429-440.
|
[21] |
关耀, 叶青, 张冲, 等. 高压低渗透碎屑岩储层孔隙结构特征及分类评价:以莺歌海盆地东方A-1区黄流组一段为例[J]. 东北石油大学学报, 2024, 48(5):75-89.
|
|
GUAN Yao, YE Qing, ZHANG Chong, et al. Pore structure characteristics and classification evaluation of high-pressure and low-permeability clastic reservoirs:A case study of the Huangliu formation in the eastern A-1 area of Yinggehai Basin[J]. Journal of Northeast Petroleum University, 2024, 48(5):75-89.
|
[22] |
GAO Lun, XIE Ranhong, GUO Jiangfeng, et al. Method for predicting mercury injection capillary pressure curve of tight sandstone using NMR data[R]. London,UK:81th EAGE Conference & Exhibition, 2019.
|
[23] |
WU Bohan, XIE Ranhong, XU Chenyu, et al. A new method for predicting capillary pressure curves based on NMR echo data:Sandstone as an example[J]. Journal of Petroleum Science and Engineering, 2021, 202:108581.
|
[24] |
唐军, 何泽, 申威, 等. 对标产能的碳酸盐岩储集层测井分类评价:以塔里木盆地托甫台地区一间房组为例[J]. 新疆石油地质, 2023, 44(1):112-118.
|
|
TANG Jun, HE Ze, SHEN Wei, et al. Productivity-based classified logging evaluation of carbonate reservoirs:A case study on Yijianfang formation in Tuofutai area,Tarim Basin[J]. Xinjiang Petroleum Geology, 2023, 44(1):112-118.
|
[25] |
WU Bohan, XIE Ranhong, XIAO Lizhi, et al. Integrated classification method of tight sandstone reservoir based on principal component analysis-simulated annealing genetic algorithm-fuzzy cluster means[J]. Petroleum Science, 2023, 20(5):2747-2758.
|
[26] |
覃建华, 李映艳, 杜戈峰, 等. 基于核磁共振测井的页岩油产能分析及甜点评价[J]. 新疆石油地质, 2024, 45(3):317-326.
|
|
QIN Jianhua, LI Yingyan, DU Gefeng, et al. NMR logging-based productivity analysis and sweet spot evaluation for shale oil[J]. Xinjiang Petroleum Geology, 2024, 45(3):317-326.
|
[27] |
张琳琳, 王孔杰, 赖枫鹏, 等. 鄂尔多斯盆地西缘奥陶系乌拉力克组海相页岩气储层甜点分类评价[J]. 石油实验地质, 2024, 46(1):191-201.
|
|
ZHANG Linlin, WANG Kongjie, LAI Fengpeng, et al. Classification and evaluation of sweet spots of marine shale gas reservoir in Ordovician Wulalike formation on the westen margin of Ordos Basin[J]. Petroleum Geology & Experiment, 2024, 46(1):191-201.
|