Xinjiang Petroleum Geology ›› 2025, Vol. 46 ›› Issue (4): 478-484.doi: 10.7657/XJPG20250411
• RESERVOIR ENGINEERING • Previous Articles Next Articles
Received:
2024-10-28
Revised:
2024-11-08
Online:
2025-08-01
Published:
2025-07-25
CLC Number:
HU Shuyong, LIU Han. Analysis on Water Invasion Patterns and Sensitivity of Drainage Parameters in Fractured Gas Reservoirs With Edge/Bottom Water[J]. Xinjiang Petroleum Geology, 2025, 46(4): 478-484.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1.
Classification of water invasion patterns"
水侵模式 | 水侵图版类型 | 构造位置 | 水气比/ (10-4 m3·m-3) | 氯根质量浓度/ (mg·L-1) | 氯根预警 时间/月 |
---|---|---|---|---|---|
沿裂缝强窜入型 | 沿高导裂缝窜入型、沿裂缝强窜入型 | 多数分布于气藏边部, 靠近边部水体 | >300 | 60 000~90 000 | 5~12 |
沿裂缝弱窜入型 | 沿裂缝弱窜入型、上窜型/沿裂缝强舌进 | 分布于气藏边部 | 带水生产期间<10 水淹后>40 | 50 000~80 000 | 8~11 |
沿裂缝弱舌进型 | 沿裂缝弱舌进/上窜型 | 主要分布于气藏轴部 | <10 | 50 000~90 000 | 2~7 |
Table 2.
Basic parameters of the model"
模型参数 | 取值 | 模型参数 | 取值 |
---|---|---|---|
基质平均孔隙度/% | 5.80 | 水的黏度/(mPa·s) | 2×10-4 |
裂缝平均孔隙度/% | 0.03 | 水的密度/(kg·m-3) | 1 028 |
基质平均渗透率/mD | 0.49 | 沿裂缝强窜入型地面条件气储量/108 m3 | 144.244 |
裂缝平均渗透率/mD | 2.58 | 沿裂缝强窜入型地层水孔隙体积/108 m3 | 2.21 |
水的压缩系数 | 4.183 2×10-5 | 沿裂缝强窜入型地层气孔隙体积/108 m3 | 0.39 |
油的密度/(kg·m-3) | 802 | 沿裂缝弱窜入型地面条件气储量/108 m3 | 120.979 |
气体密度/(kg·m-3) | 0.66 | 沿裂缝弱窜入型地层水孔隙体积/108 m3 | 2.191 |
水的体积系数 | 1.022 4 | 沿裂缝弱窜入型地层气孔隙体积/108 m3 | 0.34 |
Table 3.
Schemes of orthogonal experiments"
试验方案 | 排水量/m3 | 无因次井距 | 采气速度/% | 水体倍数 | 沿裂缝强窜入型预测 期末累计产气量/108 m3 | 沿裂缝弱窜入型预测 期末累计产气量/108 m3 |
---|---|---|---|---|---|---|
方案1 | 100 | 1.0 | 0.5 | 1 | 7.20 | 5.40 |
方案2 | 100 | 2.0 | 1.0 | 2 | 10.08 | 9.27 |
方案3 | 100 | 2.6 | 1.5 | 3 | 8.99 | 8.70 |
方案4 | 100 | 3.0 | 2.0 | 4 | 8.52 | 8.61 |
方案5 | 300 | 1.0 | 1.0 | 3 | 15.13 | 10.80 |
方案6 | 300 | 2.0 | 0.5 | 4 | 7.20 | 5.40 |
方案7 | 300 | 2.6 | 2.0 | 1 | 9.96 | 9.36 |
方案8 | 300 | 3.0 | 1.5 | 2 | 10.26 | 9.10 |
方案9 | 500 | 1.0 | 1.5 | 4 | 16.09 | 12.64 |
方案10 | 500 | 2.0 | 2.0 | 3 | 10.85 | 9.85 |
方案11 | 500 | 2.6 | 0.5 | 2 | 7.31 | 5.40 |
方案12 | 500 | 3.0 | 1.0 | 1 | 14.40 | 10.40 |
方案13 | 800 | 1.0 | 2.0 | 2 | 17.11 | 14.64 |
方案14 | 800 | 2.0 | 1.5 | 1 | 22.82 | 12.12 |
方案15 | 800 | 2.6 | 1.0 | 4 | 14.71 | 10.80 |
方案16 | 800 | 3.0 | 0.5 | 3 | 8.63 | 5.40 |
Table 4.
Forecast results at the end of the period"
排采比/ (10-4 m3·m-3) | 沿裂缝强窜入型水侵模式 | 沿裂缝弱窜入型水侵模式 | ||||
---|---|---|---|---|---|---|
预测期末 可动水储量/104 m3 | 可动水储量的 增量/104 m3 | 预测期末 累计产气量/108 m3 | 预测期末可动水储量/104 m3 | 可动水储量的 增量/104 m3 | 预测期末累计产气量/108 m3 | |
0 | 11 758.83 | 0 | 9.20 | 129 257.27 | 0 | 9.42 |
0.5 | 11 858.16 | 99.33 | 10.28 | 129 382.59 | 125.32 | 9.29 |
1.0 | 11 878.00 | 19.84 | 13.98 | 129 402.76 | 20.17 | 10.51 |
1.5 | 11 862.82 | -15.18 | 14.40 | 129 402.50 | -0.26 | 10.80 |
2.0 | 11 853.28 | -9.53 | 14.40 | 129 393.56 | -8.94 | 10.80 |
2.5 | 11 853.25 | -0.03 | 14.40 | 129 386.03 | -7.53 | 10.80 |
3.0 | 11 853.44 | 0.19 | 14.40 | 129 381.07 | -4.95 | 10.80 |
[1] | 何雨丹, 魏春光. 裂缝型油气藏勘探评价面临的挑战及发展方向[J]. 地球物理学进展, 2007, 22(2):537-543. |
HE Yudan, WEI Chunguang. The present situation and research direction of evaluation methods in fracture type reservoir[J]. Progress in Geophysics, 2007, 22(2):537-543. | |
[2] | ZULUAGA E, MONSALVE J C. Water vaporization in gas reservoirs[M]. United States: Society of Petroleum Engineers, 2003. |
[3] | 刘爱华, 韩玉坤, 梁红娇, 等. 普光气田气井水侵特征识别及出水模式探讨[J]. 特种油气藏, 2015, 22(3):125-127. |
LIU Aihua, HAN Yukun, LIANG Hongjiao, et al. Water invasion identification and water production mode in gas well in Puguang gas field[J]. Special Oil & Gas Reservoirs, 2015, 22(3):125-127. | |
[4] | 谭晓华, 韩晓冰, 任利明, 等. 基于智能优化算法的复杂气藏水侵单元数值模拟新模型[J]. 天然气工业, 2023, 43(4):127-136. |
TAN Xiaohua, HAN Xiaobing, REN Liming, et al. A new numerical simulation model of water invasion unit in complex gas reservoirs based on intelligent optimization algorithm[J]. Natural Gas Industry, 2023, 43(4):127-136. | |
[5] |
李元生, 藤赛男. 底水气藏非稳态流动水侵量和动储量预测模型研究[J]. 特种油气藏, 2023, 30(2):116-121.
doi: 10.3969/j.issn.1006-6535.2023.02.016 |
LI Yuansheng, TENG Sainan. Study on prediction model for unsteady water influx rate and dynamic reserves of gas reservoirs with bottom water[J]. Special Oil & Gas Reservoirs, 2023, 30(2):116-121. | |
[6] | 谢鹏, 陈鹏羽, 赵海龙, 等. 碳酸盐岩裂缝-孔隙型储集层水侵特征及残余气分布规律[J]. 新疆石油地质, 2023, 44(5):583-591. |
XIE Peng, CHEN Pengyu, ZHAO Hailong, et al. Water invasion characteristics and residual gas distribution in fractured-porous carbonate reservoirs[J]. Xinjiang Petroleum Geology, 2023, 44(5):583-591. | |
[7] |
康晓东, 李相方, 张国松. 气藏早期水侵识别方法[J]. 天然气地球科学, 2004, 15(6):637-639.
doi: 10.11764/j.issn.1672-1926.2004.06.637 |
KANG Xiaodong, LI Xiangfang, ZHANG Guosong. Methods to identify early water influx of gas reservoirs[J]. Natural Gas Geoscience, 2004, 15(6):637-639.
doi: 10.11764/j.issn.1672-1926.2004.06.637 |
|
[8] | 史全党, 王玉, 居来提·司马义, 等. 呼图壁气田地层水分布及水侵模式[J]. 新疆石油地质, 2012, 33(4):479-480. |
SHI Quandang, WANG Yu, Julaiti SIMAYI, et al. Distribution of formation water and analysis of water invasion pattern in Hutubi gas field[J]. Xinjiang Petroleum Geology, 2012, 33(4):479-480. | |
[9] | 徐小童, 曾联波, 董少群, 等. 塔里木盆地库车坳陷克深气藏超深层致密砂岩储层天然裂缝发育特征及对水侵的影响[J]. 石油实验地质, 2024, 46(4):812-822. |
XU Xiaotong, ZENG Lianbo, DONG Shaoqun, et al. Fracture development characteristics and their influence on water invasion of ultra-deep tight sandstone reservoirs in Keshen gas reservoir of Kuqa depression,Tarim Basin[J]. Petroleum Geology & Experiment, 2024, 46(4):812-822. | |
[10] | 宋伟, 奎明清, 李江涛, 等. 柴达木盆地涩北强水侵气藏稳产关键技术与开发对策[J]. 天然气工业, 2023, 43(12):37-45. |
SONG Wei, KUI Mingqing, LI Jiangtao, et al. Stable production technologies and development strategies for the Sebei gas pool with severe water intrusion in the Qaidam Basin[J]. Natural Gas Industry, 2023, 43(12):37-45. | |
[11] | 李凤颖, 伊向艺, 卢渊, 等. 异常高压有水气藏水侵特征[J]. 特种油气藏, 2011, 18(5):89-92. |
LI Fengying, YI Xiangyi, LU Yuan, et al. Water encroachment characteristics of water-bearing gas reservoir with abnormal pressure[J]. Special Oil & Gas Reservoirs, 2011, 18(5):89-92. | |
[12] | 柴小颖, 王燕, 刘俊丰, 等. 柴达木盆地涩北气田疏松砂岩气藏水气体积比及水侵预警[J]. 新疆石油地质, 2023, 44(1):51-57. |
CHAI Xiaoying, WANG Yan, LIU Junfeng, et al. Water-gas ratio and early warning of water invasion in unconsolidated sandstone gas reservoirs in Sebei gas field,Qaidam Basin[J]. Xinjiang Petroleum Geology, 2023, 44(1):51-57. | |
[13] | 吴永平, 杨敏, 李明, 等. 克拉2气田水侵规律及模式[J]. 新疆石油地质, 2019, 40(6):302-306. |
WU Yongping, YANG Min, LI Ming, et al. Laws and models of water invasion in Kela 2 gas field[J]. Xinjiang Petroleum Geology, 2019, 40(6):302-306. | |
[14] | 戴勇, 邱恩波, 石新朴, 等. 克拉美丽火山岩气田水侵机理及治理对策[J]. 新疆石油地质, 2014, 35(6):694-698. |
DAI Yong, QIU Enbo, SHI Xinpu, et al. Water-yielding mechanism and water control measures in Kelameili volcanic gas field,Junggar Basin[J]. Xinjiang Petroleum Geology, 2014, 35(6):694-698. | |
[15] | 邓勇, 李鹴, 李进. 裂缝型底水气藏水侵动态研究[J]. 特种油气藏, 2016, 23(4):93-95. |
DENG Yong, LI Shuang, LI Jin. Water invasion performance of fractured gas reservoir with bottom-aquifer[J]. Special Oil & Gas Reservoirs, 2016, 23(4):93-95. | |
[16] | 李智阳. 松南气田火山岩气藏的水侵特征与产水影响因素[J]. 黑龙江科技大学学报, 2019, 29(3):277-281. |
LI Zhiyang. Water invasion characteristics and influencing factors in volcanic reservoirs in Songnan gas field[J]. Journal of Heilongjiang University of Science & Technology, 2019, 29(3):277-281. | |
[17] | 李旭成, 万亭宇, 罗静, 等. 双鱼石区块栖霞组气藏试采认识及早期开发技术对策[J]. 天然气勘探与开发, 2021, 44(4):60-71. |
LI Xucheng, WAN Tingyu, LUO Jing, et al. Understanding on production test and technological countermeasures of early development stage:Examples from Qixia gas reservoirs,Shuangyushi block,northwestern Sichuan Basin[J]. Natural Gas Exploration and Development, 2021, 44(4):60-71. | |
[18] | 冯异勇, 贺胜宁. 裂缝性底水气藏气井水侵动态研究[J]. 天然气工业, 1998, 18(3):40-44. |
FENG Yiyong, HE Shengning. A research on water invasion performance of the gas wells in fractured bottom water reservoir[J]. Natural Gas Industry, 1998, 18(3):40-44. | |
[19] | 胡勇, 陈颖莉, 李滔. 气田开发中“气藏整体治水”技术理念的形成、发展及理论内涵[J]. 天然气工业, 2022, 42(9):10-20. |
HU Yong, CHEN Yingli, LI Tao. The formation development and theoretical connotations of “overall water control of gas reservoir” technology in gas field development[J]. Natural Gas Industry, 2022, 42(9):10-20. | |
[20] | 惠栋, 胡勇, 李滔, 等. 典型底水气藏开发特征及适宜开发对策启示[J]. 油气地质与采收率, 2023, 30(1):101-111. |
HUI Dong, HU Yong, LI Tao, et al. Development characteristics of typical bottom water gas reservoirs and enlightenment of suitable development countermeasures[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(1):101-111. | |
[21] | 殷金平, 孙超囡, 张东星, 等. 中高渗强边水油藏合理采液强度研究[J]. 石油化工应用, 2018, 37(1):70-73. |
YIN Jinping, SUN Chaonan, ZHANG Dongxing, et al. The reasonable mining strength of high permeability and strong water reservoir[J]. Petrochemical Industry Application, 2018, 37(1):70-73. | |
[22] | 杨海博, 张红欣, 孙志刚, 等. 边水断块油藏三维物理模拟实验[J]. 大庆石油地质与开发, 2015, 34(2):77-80. |
YANG Haibo, ZHANG Hongxin, SUN Zhigang, et al. 3D physical simulation experiment on the fault-block oil reservoir with edge water[J]. Petroleum Geology & Oilfield Development in Daqing, 2015, 34(2):77-80. | |
[23] | 周雨朦. 某油田A区抑制边水工艺研究[J]. 石化技术, 2017, 24(5):133. |
ZHOU Yumeng. Suppression of edge water in A block of an oilfield[J]. Petrochemical Industry Technology, 2017, 24(5):133. | |
[24] |
陈袁, 廖发明, 吕波, 等. 塔里木盆地迪那2气田古近系离散裂缝表征与建模[J]. 岩性油气藏, 2022, 34(3):104-116.
doi: 10.12108/yxyqc.20220310 |
CHEN Yuan, LIAO Faming, LYU Bo, et al. Discrete fracture characterization and modeling of Paleogene in Dina-2 gas field,Tarim Basin[J]. Lithologic Reservoirs, 2022, 34(3):104-116.
doi: 10.12108/yxyqc.20220310 |
|
[25] | 何晓东, 邹绍林, 卢晓敏. 边水气藏水侵特征识别及机理初探[J]. 天然气工业, 2006, 26(3):87-89. |
HE Xiaodong, ZOU Shaolin, LU Xiaomin. A preliminary discussion on mechanism and recognition of water invasion characteristics in edge water drive gas reservoirs[J]. Natural Gas Industry, 2006, 26(3):87-89. |
[1] | SONG Peng, ZHANG Xingang, YANG Weiguo, WANG Nan, SHI Jian, XIE Qichao, DUAN Wenhao. Bottom Water Injection Method and Its Application in Low-Permeability Bottom-Water Reservoirs [J]. Xinjiang Petroleum Geology, 2025, 46(3): 375-381. |
[2] | WANG Yanli, ZHU Songbai, WU Weimin, NIE Yanbo, LIN Na, ZHAO Ji, HUANG Rui. Fault/Fracture Characteristics and Production Strategies for Ultra-Deep Fractured Tight Sandstone Gas Reservoirs [J]. Xinjiang Petroleum Geology, 2025, 46(2): 217-223. |
[3] | ZENG Hui, YI Ting, LI Xingwen, YUAN Yue, YANG Ai, XIANG Lei. Water Production Characteristics and Water Control Practices in T3X2 Fractured and Watered Gas Reservoir in Xinchang Structural Belt, Sichuan Basin [J]. Xinjiang Petroleum Geology, 2025, 46(2): 246-252. |
[4] | HUANG Chao, GUO Honghui, ZHANG Shenglong, ZHU Lintao, FENG Jianwei, DU He. In-situ Stress Characteristics and Fracture Distribution Prediction of Different Segments in Shunbei No.4 Strike-Slip Fault Zone, Tarim Basin [J]. Xinjiang Petroleum Geology, 2025, 46(1): 1-12. |
[5] | LI Yuanduo, DING Shuaiwei, ZHANG Meng, XU Chuan, FAN Wenyu, QU Chuanchao. Sensitivity Analysis on Injection-Production Parameters for CO2 EOR and Storage in Low-Permeability Reservoirs Considering Storage Mechanism [J]. Xinjiang Petroleum Geology, 2024, 45(6): 711-718. |
[6] | XIE Qichao, TIAN Yafei, YUE Ping, SONG Peng, LIU Xinju, LIU Jian, LIU Wantao. Factors Influencing Productivity of Edge Waterflood in Elongated Anticlinal Reservoirs [J]. Xinjiang Petroleum Geology, 2024, 45(5): 560-566. |
[7] | LIU Qiang, LI Jing, LI Ting, ZHENG Mingjun, XU Mengjia, WANG Xuan, WU Mingyang. Oil-Water Two-Phase Flow Behaviors in Fracture-Cavity Carbonate Reservoirs With Fluid-Solid Coupling [J]. Xinjiang Petroleum Geology, 2024, 45(4): 451-459. |
[8] | DING Shuaiwei, ZHANG Meng, LI Yuanduo, XU Chuan, ZHOU Yipeng, GAO Qun, YU Hongyan. Sensitivity Analysis of Injection-Production Parameters for CO2 Huff-n-Puff Flooding and Storage in Tight Oil Reservoirs:A Case From Typical Tight Reservoirs of Chang 7 Member,Ordos Basin [J]. Xinjiang Petroleum Geology, 2024, 45(2): 181-188. |
[9] | SHI Lanxiang, TANG Wenjun, ZHOU You, WANG Bojun. Study on Water Flooding With Self-Emulsification in Heavy Oil Reservoirs [J]. Xinjiang Petroleum Geology, 2024, 45(2): 228-234. |
[10] | ZHANG Rujie, YUE Ping, ZHANG Ying, LI Xiaobo, HUANG Nan, ZHAO Liming, FAN Qingzhen. Numerical Simulation of Grid-Like Fragmented Structure of Fault-Karst Reservoirs in Southern Tuoputai Block [J]. Xinjiang Petroleum Geology, 2024, 45(1): 58-64. |
[11] | GU Hao, KANG Zhijiang, SHANG Genhua, ZHANG Dongli, LI Hongkai, HUANG Xiaote. Reasonable Productivity Optimization Methods and Application in Ultra‑Deep Fault‑Controlled Fractured-Vuggy Reservoirs [J]. Xinjiang Petroleum Geology, 2023, 44(zk(English)): 77-83. |
[12] | LIU Xueli, TAN Tao, CHEN Yong, XIE Hui, ZHU Suyang, WU Haoqiang, XIANG Dongliu. Development Characteristics of Solution-Gas Drive in Fault-Karst Reservoirs in Shunbei-1 Block [J]. Xinjiang Petroleum Geology, 2023, 44(zk(English)): 90-97. |
[13] | LI Xiaobo, WEI Xuegang, LIU Xueli, ZHANG Yixiao, LI Qing. Practice of Water Injection Development in Ultra-Deep Fault-Controlled Fractured-Vuggy Reservoirs in Shunbei Oilfield [J]. Xinjiang Petroleum Geology, 2023, 44(6): 702-710. |
[14] | GENG Yudi, LIU Lijun, WANG Lijing, GUO Tiankui. Numerical Simulation of One-Hole Multi-Target Staged Fracturing in Fractured-Vuggy Reservoirs [J]. Xinjiang Petroleum Geology, 2023, 44(6): 711-719. |
[15] | WANG Ting, WANG Jie, JIANG Houshun, XU Hualei, YAO Ziyi, NAN Chong. 3D Geological Simulation of Hydraulic Fracture Propagation and Frac-Hit Prevention in Horizontal Shale Gas Wells [J]. Xinjiang Petroleum Geology, 2023, 44(6): 720-728. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||