Xinjiang Petroleum Geology ›› 2025, Vol. 46 ›› Issue (4): 485-491.doi: 10.7657/XJPG20250412
• APPLICATION OF TECHNOLOGY • Previous Articles Next Articles
YUN Lu1(), WANG Yang1, CAO Fei1, PAN Lin2, WANG Xiao2
Received:
2025-03-10
Revised:
2025-03-14
Online:
2025-08-01
Published:
2025-07-25
CLC Number:
YUN Lu, WANG Yang, CAO Fei, PAN Lin, WANG Xiao. Experimental Study on Oil/Water Relative Permeability in Fractured Reservoirs in Shunbei Oilfield, Tarim Basin[J]. Xinjiang Petroleum Geology, 2025, 46(4): 485-491.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 2.
Similarity analysis for fracture model experiments"
参数 | 实验条件 | 研究区 | 相似性判断 |
---|---|---|---|
几何 相似性 | 模型岩块边长为1 cm、3 cm和5 cm | 研究区破碎岩块大小为数厘米不等 | 模型岩块规模与研究区岩心碎块规模相似 |
基质几乎无储渗能力,孔隙度、渗透率均 为裂缝贡献 | 碳酸盐岩基质孔渗不发育,主要为缝洞 渗透率 | 流动通道与渗透率相似 | |
动力 相似性 | 压差为0.1~10.0 MPa | 生产压差为0.1~10.0 MPa | 压差相似 |
温度为室温25 ℃ | 温度为100~140 ℃ | 温度主要影响流体性质,由于仪器无法达到储集层高温,本文采用与研究区流体性质近似的流体来达到相似性 | |
物质 相似性 | 实验用油密度为0.87 g/cm3,黏度为 50.09 mPa·s;实验用地表水密度为1.00 g/cm3,黏度0.89 mPa·s | 原油密度为0.76~0.87 g/cm3,地下原油黏度为15.00~73.00 mPa·s;地层水密度为1.12 g/cm3,黏度为1.02 mPa·s | 流体物理性质相似 |
Table 4.
Experimental data of fracture models"
实验 序号 | 围压/ MPa | 压差/ MPa | 吸入液体 质量/g | 吸入液体 体积/mL | 驱替液体 质量/g | 驱替液体 体积/mL | 实验 序号 | 围压/ MPa | 压差/ MPa | 吸入液体 质量/g | 吸入液体 体积/mL | 驱替液体 质量/g | 驱替液体 体积/mL |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 15 | 0.04 | 5.29 | 2.03 | 99.47 | 99.65 | 11 | 20 | 0.15 | 3.16 | 1.21 | 100.26 | 100.35 |
2 | 15 | 0.05 | 2.77 | 1.06 | 99.13 | 99.23 | 12 | 20 | 0.16 | 6.99 | 2.68 | 101.03 | 101.25 |
3 | 15 | 0.06 | 7.66 | 2.94 | 95.49 | 95.73 | 13 | 20 | 0.17 | 4.11 | 1.58 | 96.59 | 96.74 |
4 | 15 | 0.07 | 3.59 | 1.38 | 90.23 | 90.34 | 14 | 20 | 0.18 | 8.24 | 3.16 | 103.72 | 104.02 |
5 | 15 | 0.10 | 8.00 | 3.07 | 98.58 | 98.88 | 15 | 20 | 0.19 | 3.74 | 1.43 | 96.65 | 96.72 |
6 | 15 | 0.10 | 5.06 | 1.94 | 100.79 | 100.97 | 16 | 25 | 0.20 | 7.77 | 2.98 | 94.12 | 94.41 |
7 | 15 | 0.11 | 11.14 | 4.27 | 99.11 | 99.53 | 17 | 25 | 0.23 | 4.19 | 1.61 | 97.49 | 97.65 |
8 | 15 | 0.12 | 9.73 | 3.73 | 102.96 | 103.30 | 18 | 25 | 0.25 | 13.42 | 5.14 | 98.25 | 98.79 |
9 | 15 | 0.13 | 17.10 | 6.56 | 99.54 | 100.14 | 19 | 25 | 0.27 | 5.89 | 2.26 | 102.70 | 102.93 |
10 | 20 | 0.14 | 14.77 | 5.66 | 101.67 | 102.23 | 20 | 25 | 0.29 | 11.15 | 4.27 | 99.45 | 99.87 |
[1] | 陈元千. 水驱油田矿场经验分析式的推导及其应用(第一部分:基本公式推导)[J]. 石油勘探与开发, 1981, 8(2):59-67. |
CHEN Yuanqian. Derivation and application of empirical analysis formulas for water-flooding oilfields (Part 1:Derivation of basic formulas)[J]. Petroleum Exploration and Development, 1981, 8(2):59-67. | |
[2] | 王国先, 谢建勇, 李建良, 等. 储集层相对渗透率曲线形态及开采特征[J]. 新疆石油地质, 2004, 25(3):301-304. |
WANG Guoxian, XIE Jianyong, LI Jianliang, et al. On relative permeability curves and production characteristics of reservoirs[J]. Xinjiang Petroleum Geology, 2004, 25(3):301-304. | |
[3] |
张继成, 宋考平. 相对渗透率特征曲线及其应用[J]. 石油学报, 2007, 28(4):104-107.
doi: 10.7623/syxb200704021 |
ZHANG Jicheng, SONG Kaoping. Eigen curve of relative permeability and its application[J]. Acta Petrolei Sinica, 2007, 28(4):104-107.
doi: 10.7623/syxb200704021 |
|
[4] | 吕成远. 油藏条件下油水相对渗透率实验研究[J]. 石油勘探与开发, 2003, 30(4):102-104. |
LV Chengyuan. Experimental study on oil-water relative permeability under natural reservoir conditions[J]. Petroleum Exploration and Development, 2003, 30(4):102-104. | |
[5] | 吕伟峰, 秦积舜, 吴康云, 等. 低渗岩石孔渗及相对渗透率测试方法综述[J]. 特种油气藏, 2011, 18(3):11-16. |
LV Weifeng, QIN Jishun, WU Kangyun, et al. An overview of testing methods of poroperm and relative permeability for low permeability rocks[J]. Special Oil & Gas Reservoirs, 2011, 18(3):11-16. | |
[6] | 冷振鹏, 吕伟峰, 张祖波, 等. 基于CT扫描测定低渗岩心相对渗透率曲线的方法[J]. 特种油气藏, 2013, 20(1):118-121. |
LENG Zhenpeng, LV Weifeng, ZHANG Zubo, et al. Methods of measuring relative permeability curves with low permeability core based on CT scanning[J]. Special Oil & Gas Reservoirs, 2013, 20(1):118-121. | |
[7] |
屈鸣, 孙海童, 梁拓, 等. 纳米流体相渗曲线研究进展[J]. 特种油气藏, 2023, 30(6):1-9.
doi: 10.3969/j.issn.1006-6535.2023.06.001 |
QU Ming, SUN Haitong, LIANG Tuo, et al. Research progress of nano fluid phase permeability curves[J]. Special Oil & Gas Reservoirs, 2023, 30(6):1-9. | |
[8] | 蒋明, 宋富霞, 郭发军, 等. 利用水驱特征曲线计算相对渗透率曲线[J]. 新疆石油地质, 1999, 20(5):418-421. |
JIANG Ming, SONG Fuxia, GUO Fajun, et al. Computation of relative permeability curve by using water-drive curve[J]. Xinjiang Petroleum Geology, 1999, 20(5):418-421. | |
[9] | 刘丹, 潘保芝, 陈刚, 等. 致密砂岩气水相渗曲线的统一描述方法[J]. 地球物理学进展, 2015, 30(1):300-303. |
LIU Dan, PAN Baozhi, CHEN Gang, et al. Unified description on compact sandstone gas-water relative permeability curve[J]. Progress in Geophysics, 2015, 30(1):300-303. | |
[10] |
王长权, 田中敬, 王晨晨, 等. 基于应力敏感的致密油藏孔隙结构及油水两相渗流特征[J]. 特种油气藏, 2023, 30(4):131-138.
doi: 10.3969/j.issn.1006-6535.2023.04.016 |
WANG Changquan, TIAN Zhongjing, WANG Chenchen, et al. Pore structure and oil-water two-phase seepage characteristics of tight oil reservoirs based on stress sensitivity[J]. Special Oil & Gas Reservoirs, 2023, 30(4):131-138. | |
[11] | 崔传智, 郑文乾, 李立峰, 等. 基于动态数据反演的相渗曲线及应用效果[J]. 石油钻采工艺, 2019, 41(4):516-520. |
CUI Chuanzhi, ZHENG Wenqian, LI Lifeng, et al. The relative permeability curve based on dynamic data inversion and its application effect[J]. Oil Drilling & Production Technology, 2019, 41(4):516-520. | |
[12] | 郑文宽, 刘月田, 刘逸盛, 等. 微裂缝各向异性相对渗透率实验[J]. 断块油气田, 2019, 26(3):364-366. |
ZHENG Wenkuan, LIU Yuetian, LIU Yisheng, et al. Anisotropy experiment of microfracture relative permeability[J]. Fault-Block Oil & Gas Field, 2019, 26(3):364-366. | |
[13] | 顾少华, 岑芳, 张岩, 等. 超深海相碳酸盐岩储层气水相对渗透率实验[J]. 油气地质与采收率, 2022, 29(2):117-123. |
GU Shaohua, CEN Fang, ZHANG Yan, et al. Experimental study on gas-water relative permeability of ultra-deep marine carbonate reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(2):117-123. | |
[14] | 苏海波, 王晓宏, 张世明, 等. 低渗透油藏油水相对渗透率模型的分形表征方法[J]. 东北石油大学学报, 2019, 43(5):88-94. |
SU Haibo, WANG Xiaohong, ZHANG Shiming, et al. Fractal characterization method of oil-water relative permeability model in low permeability reservoirs[J]. Journal of Northeast Petroleum University, 2019, 43(5):88-94. | |
[15] | 苏海波, 张世明, 孙业恒, 等. 基于分形理论的低渗透油藏油水相对渗透率模型[J]. 油气地质与采收率, 2020, 27(4):67-78. |
SU Haibo, ZHANG Shiming, SUN Yeheng, et al. Oil-water relative permeability model of low permeability reservoir based on fractal theory[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(4):67-78. | |
[16] | 张涛, 李相方, 王香增, 等. 致密砂岩气水相对渗透率模型[J]. 中国科学:技术科学, 2018, 48(10):1132-1140. |
ZHANG Tao, LI Xiangfang, WANG Xiangzeng, et al. Gas-water relative permeability model for tight sandstone gas reservoirs[J]. Scientia Sinica Technologica, 2018, 48(10):1132-1140. | |
[17] | 张鹏伟, 胡黎明, MEEGODA J N, 等. 基于岩土介质三维孔隙结构的两相流模型[J]. 岩土工程学报, 2020, 42(1):37-45. |
ZHANG Pengwei, HU Liming, MEEGODA J N, et al. Two-phase flow model based on 3D pore structure of geomaterials[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1):37-45. | |
[18] | 刘强, 李静, 李婷, 等. 碳酸盐岩缝洞型油藏流固耦合下的油水两相流动特征[J]. 新疆石油地质, 2024, 45(4):451-459. |
LIU Qiang, LI Jing, LI Ting, et al. Oil-water two-phase flow behaviors in fracture-cavity carbonate reservoirs with fluid-solid coupling[J]. Xinjiang Petroleum Geology, 2024, 45(4):451-459. | |
[19] | 刘新福, 刘春花, 李清平, 等. 高压含水气井两相流态节流判断与控制方法[J]. 煤田地质与勘探, 2024, 52(3):48-55. |
LIU Xinfu, LIU Chunhua, LI Qingping, et al. Two-phase flow chokeling results and control in high-pressure gas wells producing water[J]. Coal Geology & Exploration, 2024, 52(3):48-55. | |
[20] | 赵国忠, 董大鹏, 肖鲁川. 两相低速非达西渗流模型及相对渗透率曲线求取方法[J]. 油气地质与采收率, 2022, 29(2):69-76. |
ZHAO Guozhong, DONG Dapeng, XIAO Luchuan. Calculation of two-phase relative permeability curves based on a low-velocity non-Darcy flow model[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(2):69-76. | |
[21] | 李婧, 范晖, 刘春茹, 等. 新型油水相渗数学模型的建立及应用[J]. 新疆石油地质, 2023, 44(1):70-75. |
LI Jing, FAN Hui, LIU Chunru, et al. Establishment and application of a new mathematical model for oil/water relative permeability[J]. Xinjiang Petroleum Geology, 2023, 44(1):70-75. | |
[22] | 李春雷, 曹小朋, 张林凤, 等. 基于机器学习算法的水驱储层相渗曲线仿真预测[J]. 油气地质与采收率, 2022, 29(6):138-142. |
LI Chunlei, CAO Xiaopeng, ZHANG Linfeng, et al. Simulation and prediction of water-flooding reservoir relative permeability curve based on machine learning[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(6):138-142. | |
[23] | 葛启兵, 刘倩, 马建红, 等. 一种新的油水相渗数学模型建立及应用:以吐哈盆地低黏油藏为例[J]. 新疆石油地质, 2024, 45(6):725-734. |
GE Qibing, LIU Qian, MA Jianhong, et al. Establishment and application of a new mathematical model of oil/water relative permeability:A case study of low-viscosity reservoirs in Tuha Basin[J]. Xinjiang Petroleum Geology, 2024, 45(6):725-734. | |
[24] |
边会媛, 舒均河, 刘蝶, 等. 基于核磁T2谱计算油水相对渗透率的方法研究[J]. 地球物理学进展, 2024, 39(6):2328-2336.
doi: 10.6038/pg2024HH0578 |
BIAN Huiyuan, SHU Junhe, LIU Die, et al. Study on the method of calculating oil-water relative permeability based on nuclear magnetic T2 spectrum[J]. Progress in Geophysics, 2024, 39(6):2328-2336. | |
[25] |
潘毅, 王攀荣, 宋道万, 等. 复杂裂缝网络系统油水相渗曲线特征实验研究[J]. 西南石油大学学报(自然科学版), 2016, 38(4):110-116.
doi: 10.11885/j.issn.1674-5086.2014.05.26.05 |
PAN Yi, WANG Panrong, SONG Daowan, et al. Experimental researches on relative permeability curve of complex fracture system[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2016, 38(4):110-116. | |
[26] | 孟智强, 凌浩川, 朱志强, 等. 裂缝性油藏吸入毛管压力曲线研究及应用[J]. 西安石油大学学报(自然科学版), 2019, 34(2):60-65. |
MENG Zhiqiang, LING Haochuan, ZHU Zhiqiang, et al. Research and application of sucking capillary pressure curve of fractured reservoir[J]. Journal of Xi’an Shiyou University(Natural Science Edition), 2019, 34(2):60-65. | |
[27] | 郭红鑫, 程林松, 王鹏, 等. 碳酸盐岩油藏不同裂缝产状岩心水驱油实验及水驱规律[J]. 油气地质与采收率, 2022, 29(6):105-112. |
GUO Hongxin, CHENG Linsong, WANG Peng, et al. Water flooding experiment and law of carbonate reservoir cores with different fracture occurrences[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(6):105-112. | |
[28] | 王志伟, 张凯, 武群虎, 等. 基于井震裂缝识别敏感性参数模型的碳酸盐岩储层裂缝预测方法[J]. 煤田地质与勘探, 2023, 51(6):163-174. |
WANG Zhiwei, ZHANG Kai, WU Qunhu, et al. A method for predicting fractures in carbonate reservoirs based on fracture identification-sensitive log-seismic parameter model[J]. Coal Geology & Exploration, 2023, 51(6):163-174. | |
[29] |
马永生, 蔡勋育, 云露, 等. 塔里木盆地顺北超深层碳酸盐岩油气田勘探开发实践与理论技术进展[J]. 石油勘探与开发, 2022, 49(1):1-17.
doi: 10.11698/PED.2022.01.01 |
MA Yongsheng, CAI Xunyu, YUN Lu, et al. Practice and theoretical and technical progress in exploration and development of Shunbei ultra-deep carbonate oil and gas field,Tarim Basin,NW China[J]. Petroleum Exploration and Development, 2022, 49(1):1-17.
doi: 10.1016/S1876-3804(22)60001-6 |
[1] | CAO Zicheng, GENG Feng, REN Lidan, JIANG Huashan, SHANG Kai, LIU Yongli. Exploration History and New Frontiers of Oil and Gas in Deep to Ultra-Deep Carbonate Reservoirs in Tarim Basin [J]. Xinjiang Petroleum Geology, 2025, 46(4): 395-402. |
[2] | LI Zongjie, LI Hongyan, YANG Wei, GONG Wei, GAO Lijun. Five-Dimensional Seismic Fracture Prediction Technology in Shunbei Oil and Gas Field [J]. Xinjiang Petroleum Geology, 2025, 46(4): 403-409. |
[3] | REN Wenbo, LIU Diren, LI Xiaobo, CAO Fei, LIU Xueli, DAI Jincheng. Efficient Development Strategy for Ultra-Deep Fault-Controlled Volatile Reservoirs in Shunbei Oilfield [J]. Xinjiang Petroleum Geology, 2025, 46(4): 448-456. |
[4] | JIANG Lin, WEI Xuegang, GUO Chen, ZHU Lele, ZENG Qingyong, LIU Xueli. Effects and Controlling Factors of Nitrogen Injection in Fractured-Vuggy Carbonate Reservoirs of Tahe Oilfield [J]. Xinjiang Petroleum Geology, 2025, 46(4): 457-464. |
[5] | LIU Yaoyu, HE Yunfeng, ZHANG Wenxue, MEI Shengwen, CHI Linxian, WANG Ligang. Performance Evaluation of Water Injection for Energy Replenishment in Fault-Controlled Fractured-Vuggy Reservoirs in Shunbei No.1 Fault Zone, Tarim Basin [J]. Xinjiang Petroleum Geology, 2025, 46(4): 470-477. |
[6] | LONG Shengfang, HOU Yunchao, ZHAO Yuhua, ZHANG Jie, HAO Jinxin, GU Zhaoxing. Fault Characteristics and Influences on Jurassic Reservoirs in the Yanwu Area, Ordos Basin [J]. Xinjiang Petroleum Geology, 2025, 46(3): 329-337. |
[7] | LI Hui, NING Yaxin. Differences in Natural Fracture Development in Ultra-Deep Carbonate Reservoirs: A Case Study of YUEM Area in Tarim Basin [J]. Xinjiang Petroleum Geology, 2025, 46(2): 144-153. |
[8] | JI Fei, SUN Xinxin, ZHANG Qi. Establishment of a New Production Decline Equation and Its Theoretical Basis: A Case Study of Unconventional Reservoirs in Tuha Oilfield [J]. Xinjiang Petroleum Geology, 2024, 45(6): 696-702. |
[9] | LI Jikang, ZENG Qingyong, GUO Chen, LI Qing, ZHU Lele. Multi-Scale and Multi-Constraint Geological Modeling of Fault-Controlled Karst Reservoirs [J]. Xinjiang Petroleum Geology, 2024, 45(6): 719-724. |
[10] | GE Qibing, LIU Qian, MA Jianhong, GAO Wenjun. Establishment and Application of a New Mathematical Model of Oil/Water Relative Permeability: A Case Study of Low-Viscosity Reservoirs in Tuha Basin [J]. Xinjiang Petroleum Geology, 2024, 45(6): 725-734. |
[11] | XIONG Chang, SHEN Chunguang, ZHAO Xingxing, ZHAO Longfei, LI Shengqian, ZHOU Jie, PAN Tiancou. Segmentation of Strike-Slip Faults and Its Controls on Hydrocarbon Accumulation in Tarim Basin: A Case Study of FⅠ17 Strike-Slip Fault Zone [J]. Xinjiang Petroleum Geology, 2024, 45(4): 417-424. |
[12] | LI Mohan, LI Xiangwen, DU Zhongyuan, ZHANG Yintao, JIN Meng, WANG Ziao. Establishment of Geological Model of Ancient Pockmarks in Fuman Oilfield, Tarim Basin [J]. Xinjiang Petroleum Geology, 2024, 45(4): 442-450. |
[13] | LIU Qiang, LI Jing, LI Ting, ZHENG Mingjun, XU Mengjia, WANG Xuan, WU Mingyang. Oil-Water Two-Phase Flow Behaviors in Fracture-Cavity Carbonate Reservoirs With Fluid-Solid Coupling [J]. Xinjiang Petroleum Geology, 2024, 45(4): 451-459. |
[14] | WANG Rujun, SUN Chong, YUAN Jingyi, LIU Ruidong, WANG Xuan, MA Yinglong, WANG Xupeng. Seismic Identification of Strike-Slip Fault Damage Zones Based on Structure Tensor Analysis: A Case Study of Ultra-Deep Carbonate Rocks in Fuman Oilfield [J]. Xinjiang Petroleum Geology, 2024, 45(4): 475-482. |
[15] | GENG Jie, YUE Ping, YANG Wenming, YANG Bo, ZHAO Bin, ZHANG Rujie. Dynamic Reserves Calculation Method for Fault-Controlled Carbonate Reservoirs [J]. Xinjiang Petroleum Geology, 2024, 45(4): 499-504. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||