Xinjiang Petroleum Geology ›› 2025, Vol. 46 ›› Issue (3): 388-394.doi: 10.7657/XJPG20250317
• APPLICATION OF TECHNOLOGY • Previous Articles
CHEN Lina(), XU Qianwenb, CHEN Kuna, CHEN Xiaodonga, LIU Wenc, WEN Linc, LIU Binc
Received:
2024-11-18
Revised:
2024-12-24
Online:
2025-06-01
Published:
2025-06-13
CLC Number:
CHEN Lin, XU Qianwen, CHEN Kun, CHEN Xiaodong, LIU Wen, WEN Lin, LIU Bin. A Displacement Limit Characterization Method for Waterflooding in Ultra-Low Permeability Reservoirs[J]. Xinjiang Petroleum Geology, 2025, 46(3): 388-394.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1.
Characteristic parameters of pore-throat structure in the study area"
岩心 编号 | 渗透率/ mD | 孔隙度/ % | 结构 系数 | 均质 系数 | 孔喉中值 半径/μm | 最大孔喉 半径/μm | 平均孔喉 半径/μm | 孔喉半径 均值 | 分选 系数 | 变异 系数 | 歪度 系数 | 峰态 系数 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.69 | 10.5 | 0.2 | 0.28 | 0.09 | 0.40 | 0.11 | 12.5 | 1.3 | 0.10 | 0.2 | 0.9 |
2 | 0.36 | 11.0 | 1.4 | 0.28 | 0.15 | 0.69 | 0.19 | 12.1 | 1.8 | 0.15 | 0.3 | 0.7 |
3 | 0.15 | 6.9 | 0.9 | 0.10 | 0.06 | 1.24 | 0.12 | 12.9 | 1.7 | 0.13 | -0.1 | 0.8 |
4 | 0.31 | 13.4 | 1.2 | 0.16 | 0.10 | 0.92 | 0.15 | 12.4 | 1.6 | 0.13 | 0.1 | 0.9 |
5 | 0.56 | 8.5 | 0.3 | 0.19 | 0.07 | 0.69 | 0.13 | 12.6 | 1.6 | 0.13 | 0 | 0.8 |
6 | 0.26 | 11.8 | 1.2 | 0.21 | 0.09 | 0.71 | 0.15 | 12.4 | 1.6 | 0.13 | 0 | 0.8 |
7 | 0.35 | 8.9 | 0.3 | 0.16 | 0.06 | 0.60 | 0.09 | 13.1 | 1.4 | 0.11 | 0 | 0.9 |
8 | 0.38 | 6.7 | 0.1 | 0.13 | 0.05 | 0.45 | 0.06 | 13.5 | 1.0 | 0.07 | 0.2 | 1.1 |
9 | 0.23 | 10.5 | 1.5 | 0.20 | 0.11 | 0.80 | 0.16 | 12.4 | 1.8 | 0.14 | 0.2 | 0.8 |
10 | 0.71 | 6.0 | 0.2 | 0.14 | 0.05 | 0.94 | 0.13 | 13.1 | 1.9 | 0.14 | -0.3 | 0.9 |
11 | 0.05 | 7.5 | 9.8 | 0.18 | 0.14 | 1.23 | 0.22 | 12.2 | 2.0 | 0.16 | 0.2 | 0.7 |
12 | 0.70 | 7.2 | 0.0 | 0.07 | 0.03 | 0.68 | 0.05 | 14.3 | 1.0 | 0.07 | -0.1 | 1.5 |
13 | 0.49 | 6.2 | 0.2 | 0.16 | 0.04 | 0.76 | 0.12 | 13.0 | 1.8 | 0.14 | -0.3 | 0.8 |
14 | 0.87 | 9.5 | 0.3 | 0.18 | 0.09 | 0.85 | 0.15 | 12.5 | 1.7 | 0.13 | 0.1 | 0.9 |
15 | 0.54 | 16.4 | 0.5 | 0.17 | 0.06 | 0.69 | 0.12 | 12.7 | 1.3 | 0.10 | -0.3 | 0.8 |
16 | 0.07 | 12.1 | 7.7 | 0.23 | 0.14 | 0.86 | 0.19 | 12.1 | 1.7 | 0.14 | 0.2 | 0.8 |
17 | 0.37 | 12.2 | 0.3 | 0.17 | 0.07 | 0.54 | 0.09 | 12.9 | 1.2 | 0.09 | 0.2 | 1.0 |
18 | 0.51 | 11.8 | 0.5 | 0.19 | 0.09 | 0.70 | 0.13 | 12.5 | 1.6 | 0.12 | 0.1 | 0.9 |
19 | 0.08 | 5.7 | 3.8 | 0.30 | 0.16 | 0.69 | 0.21 | 12.0 | 1.7 | 0.15 | 0.3 | 0.8 |
20 | 0.32 | 6.3 | 0.4 | 0.18 | 0.06 | 0.70 | 0.13 | 12.8 | 1.7 | 0.13 | -0.1 | 0.8 |
21 | 0.05 | 6.2 | 1.2 | 0.10 | 0.05 | 0.82 | 0.09 | 13.1 | 1.2 | 0.09 | -0.1 | 1.3 |
22 | 0.22 | 11.5 | 5.5 | 0.30 | 0.28 | 0.96 | 0.29 | 11.6 | 1.9 | 0.17 | 0.5 | 0.7 |
23 | 0.05 | 9.1 | 1.8 | 0.15 | 0.06 | 0.57 | 0.08 | 13.1 | 1.3 | 0.10 | 0 | 1.2 |
24 | 0.33 | 10.9 | 0.5 | 0.22 | 0.07 | 0.48 | 0.10 | 12.7 | 1.2 | 0.10 | -0.1 | 0.9 |
25 | 0.17 | 11.4 | 1.7 | 0.20 | 0.08 | 0.70 | 0.14 | 12.5 | 1.7 | 0.13 | 0 | 0.8 |
26 | 0.25 | 8.9 | 1.2 | 0.18 | 0.09 | 0.95 | 0.17 | 12.6 | 1.9 | 0.15 | 0 | 0.7 |
27 | 0.06 | 7.5 | 1.9 | 0.20 | 0.07 | 0.55 | 0.11 | 12.9 | 1.6 | 0.12 | 0 | 0.8 |
28 | 0.27 | 9.1 | 1.0 | 0.19 | 0.08 | 0.83 | 0.15 | 12.5 | 1.8 | 0.14 | 0 | 0.8 |
29 | 0.06 | 5.1 | 0.3 | 0.11 | 0.03 | 0.50 | 0.05 | 14.0 | 1.2 | 0.09 | -0.2 | 1.3 |
30 | 0.08 | 7.7 | 1.1 | 0.21 | 0.05 | 0.46 | 0.09 | 13.0 | 1.5 | 0.11 | -0.2 | 0.9 |
31 | 0.47 | 10.2 | 0.4 | 0.27 | 0.09 | 0.43 | 0.12 | 12.7 | 1.5 | 0.12 | 0.2 | 0.8 |
32 | 0.04 | 6.9 | 3.0 | 0.25 | 0.10 | 0.48 | 0.12 | 12.6 | 1.5 | 0.12 | 0.2 | 0.9 |
33 | 0.23 | 12.3 | 0.8 | 0.22 | 0.08 | 0.49 | 0.11 | 12.7 | 1.4 | 0.11 | 0 | 1.0 |
34 | 0.17 | 9.3 | 1.5 | 0.21 | 0.08 | 0.72 | 0.15 | 12.6 | 1.8 | 0.14 | 0 | 0.7 |
35 | 0.19 | 10.4 | 1.1 | 0.21 | 0.08 | 0.59 | 0.13 | 12.7 | 1.6 | 0.13 | 0 | 0.8 |
Table 2.
Correlation coefficients between movable fluid saturation/pore-throat radius cut-off and parameters in the study area"
参数 | 可动流体饱和度 与参数相关系数 | 孔喉半径截止值 与参数相关系数 |
---|---|---|
渗透率 | 0.57 | -0.41 |
孔隙度 | 0.53 | -0.38 |
结构系数 | -0.23 | 0.50 |
均质系数 | -0.12 | 0.23 |
孔喉中值半径 | -0.10 | 0.57 |
最大孔喉半径 | -0.12 | 0.50 |
平均孔喉半径 | -0.30 | 0.77 |
孔喉半径均值 | -0.12 | -0.54 |
分选系数 | -0.34 | 0.82 |
变异系数 | -0.29 | 0.83 |
歪度系数 | -0.08 | 0.38 |
峰态系数 | 0.41 | -0.51 |
Table 4.
Core sample parameters for waterflooding experiments"
岩心 编号 | 渗透率/ mD | 平均孔喉 半径/μm | 变异 系数 | 驱替 界限 |
---|---|---|---|---|
1 | 0.15 | 0.17 | 0.13 | 0.26 |
2 | 0.26 | 0.15 | 0.13 | 0.26 |
3 | 0.23 | 0.16 | 0.14 | 0.26 |
4 | 0.22 | 0.29 | 0.17 | 0.27 |
5 | 0.17 | 0.14 | 0.13 | 0.25 |
6 | 0.25 | 0.17 | 0.15 | 0.26 |
7 | 0.27 | 0.15 | 0.14 | 0.25 |
8 | 0.23 | 0.11 | 0.11 | 0.23 |
9 | 0.17 | 0.15 | 0.14 | 0.25 |
10 | 0.19 | 0.13 | 0.13 | 0.24 |
[1] | 连建文, 汪耀宗, 杨继光. 水驱曲线标定技术可采储量的极限含水率[J]. 新疆石油地质, 2024, 45(6):687-695. |
LIAN Jianwen, WANG Yaozong, YANG Jiguang. Determination of limit water cut of technically recoverable reserves calibrated by water drive curve[J]. Xinjiang Petroleum Geology, 2024, 45(6):687-695. | |
[2] | 项燚伟, 彭港珍, 温中林, 等. 适用于有水气藏的新型水驱特征曲线应用[J]. 科学技术与工程, 2024, 24(29):12524-12530. |
XIANG Yiwei, PENG Gangzhen, WEN Zhonglin, et al. Application of new waterflooding characteristic curve for water-bearing gas reservoirs[J]. Science Technology and Engineering, 2024, 24(29):12524-12530. | |
[3] | 黄映仕, 缪云, 徐伟, 等. 一种基于两点法求解井网密度与采收率关系的方法[J]. 石油化工应用, 2023, 42(9):25-28. |
HUANG Yingshi, MIAO Yun, XU Wei, et al. A method for solving the relationship between well pattern density and oil recovery based on two-point method[J]. Petrochemical Industry Application, 2023, 42(9):25-28. | |
[4] | 王桐, 金心岫, 陈雅彤. 青平川油区长2油藏水驱采收率计算及评价[J]. 石油地质与工程, 2022, 36(6):67-71. |
WANG Tong, JIN Xinxiu, CHEN Yatong. Water drive recovery calculation and evaluation of Chang 2 reservoir in Qingpingchuan oil area[J]. Petroleum Geology and Engineering, 2022, 36(6):67-71. | |
[5] | 冯波, 刘万涛, 刘广峰, 等. 陇东长7致密油藏气驱喉道动用半径下限[J]. 大庆石油地质与开发, 2019, 38(3):159-166. |
FENG Bo, LIU Wantao, LIU Guangfeng, et al. Developed radius limit for the throat by the gas flooding in Longdong Chang-7 tight oil reservoir[J]. Petroleum Geology & Oilfield Development in Daqing, 2019, 38(3):159-166. | |
[6] | 卢振东, 刘成林, 臧起彪, 等. 高压压汞与核磁共振技术在致密储层孔隙结构分析中的应用:以鄂尔多斯盆地合水地区为例[J]. 地质科技通报, 2022, 41(3):300-310. |
LU Zhendong, LIU Chenglin, ZANG Qibiao, et al. Application of high pressure mercury injection and nuclear magnetic resonance in analysis of the pore structure of dense sandstone:A case study of the Heshui area,Ordos Basin[J]. Bulletin of Geological Science and Technology, 2022, 41(3):300-310. | |
[7] | 王波, 郭强, 王春伟, 等. 基于低场核磁共振的致密储层孔隙结构特征及流体可动性研究:以敦煌盆地五墩凹陷侏罗系为例[J]. 西北地质, 2024, 57(5):156-165. |
WANG Bo, GUO Qiang, WANG Chunwei, et al. Pore structure characteristics and fluid mobility of tight reservoir based on nuclear magnetic resonance:A case study of Jurassic in Wudun sag,Dunhuang Basin[J]. Northwestern Geology, 2024, 57(5):156-165. | |
[8] | 李爱芬, 任晓霞, 王桂娟, 等. 核磁共振研究致密砂岩孔隙结构的方法及应用[J]. 中国石油大学学报(自然科学版), 2015, 39(6):92-98. |
LI Aifen, REN Xiaoxia, WANG Guijuan, et al. Characterization of pore structure of low permeability reservoirs using a nuclear magnetic resonance method[J]. Journal of China University of Petroleum(Edition of Natural Science), 2015, 39(6):92-98. | |
[9] | 武轶凡, 杨文宇, 李渊. 基于低场核磁共振的煤岩孔裂隙结构定量表征[J]. 科学技术与工程, 2024, 24(25):10739-10745. |
WU Yifan, YANG Wenyu, LI Yuan. Quantitative characterization of coal pore and fracture structure based on low-field nuclear magnetic resonance[J]. Science Technology and Engineering, 2024, 24(25):10739-10745. | |
[10] | 白振强, 王清华, 宋文波. 基于核磁共振的天然气驱储集层孔喉动用下限[J]. 新疆石油地质, 2023, 44(1):58-63. |
BAI Zhenqiang, WANG Qinghua, SONG Wenbo. Lower limits of pore throat producing in natural gas drive reservoirs based on nuclear magnetic resonance[J]. Xinjiang Petroleum Geology, 2023, 44(1):58-63. | |
[11] | 任颖惠, 吴珂, 何康宁, 等. 核磁共振技术在研究超低渗-致密油储层可动流体中的应用:以鄂尔多斯盆地陇东地区延长组为例[J]. 矿物岩石, 2017, 37(1):103-110. |
REN Yinghui, WU Ke, HE Kangning, et al. Application of NMR technique to movable fluid of ultra-low permeability and tight reservoir:A case study on the Yanchang formation in Longdong area,Ordos Basin[J]. Journal of Mineralogy and Petrology, 2017, 37(1):103-110. | |
[12] | 喻建, 杨孝, 李斌, 等. 致密油储层可动流体饱和度计算方法:以合水地区长7致密油储层为例[J]. 石油实验地质, 2014, 36(6):767-772. |
YU Jian, YANG Xiao, LI Bin, et al. A method of determining movable fluid saturation of tight oil reservoirs:A case study of tight oil reservoirs in seventh member of Yanchang formation in Heshui area[J]. Petroleum Geology & Experiment, 2014, 36(6):767-772. | |
[13] | 廖璐璐, 李根生, 曾义金, 等. 基于数据挖掘与机器学习技术的低渗储层产量预测[J]. 长江大学学报(自然科学版), 2023, 20(5):91-97. |
LIAO Lulu, LI Gensheng, ZENG Yijin, et al. Production prediction of low permeability reservoir based on data mining and machine learning technology[J]. Journal of Yangtze University(Natural Science Edition), 2023, 20(5):91-97. | |
[14] | 王殿武, 赵云斌, 尚丽英, 等. 皮尔逊相关系数算法在B油田优选化学防砂措施井的应用[J]. 精细与专用化学品, 2022, 30(7):26-28. |
WANG Dianwu, ZHAO Yunbin, SHANG Liying, et al. Application of Pearson correlation coefficient algorithm in selecting chemical sand control measure wells in B oilfield[J]. Fine and Specialty Chemicals, 2022, 30(7):26-28. | |
[15] | 饶扬. 长垣西部葡萄花油层复杂油水层识别方法研究[D]. 湖北荆州: 长江大学, 2021. |
RAO Yang. Study on identification method of complex oil-water layer of Putaohua oil layer in the western Changyuan[D]. Jingzhou,Hubei: Yangtze University, 2021. | |
[16] | 闫健, 秦大鹏, 王平平, 等. 鄂尔多斯盆地致密砂岩储层可动流体赋存特征及其影响因素[J]. 油气地质与采收率, 2020, 27(6):47-56. |
YAN Jian, QIN Dapeng, WANG Pingping, et al. Occurrence characteristics and main controlling factors of movable fluid in tight sandstone reservoirs in Ordos Basin[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(6):47-56. | |
[17] |
石立华, 师调调, 廖志昊, 等. 低渗致密砂岩油藏水驱储层变化规律[J]. 特种油气藏, 2024, 31(3):106-115.
doi: 10.3969/j.issn.1006-6535.2024.03.014 |
SHI Lihua, SHI Tiaotiao, LIAO Zhihao, et al. The variation law of water flooding reservoir in low permeability tight sandstone reservoirs[J]. Special Oil & Gas Reservoirs, 2024, 31(3):106-115. | |
[18] | 付兰清. 致密砂岩动态渗吸排驱核磁共振在线实验:以松辽盆地北部扶余油层为例[J]. 大庆石油地质与开发, 2023, 42(3):66-74. |
FU Lanqing. NMR online experiment for dynamic imbibition drainage of tight sandstone:A case study of Fuyu reservoir in northern Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2023, 42(3):66-74. | |
[19] | 陈洪才, 王昭凯, 金忠康, 等. 中低渗砂岩油藏水驱后期油藏再评价及提高采收率对策[J]. 特种油气藏, 2024, 31(4):133-141. |
CHEN Hongcai, WANG Zhaokai, JIN Zhongkang, et al. Re-evaluation of medium-low permeability sandstone reservoirs in the later stage of water flooding and strategies to improve recovery efficiency[J]. Special Oil & Gas Reservoirs, 2024, 31(4):133-141. | |
[20] |
时建超, 屈雪峰, 雷启鸿, 等. 致密油储层可动流体分布特征及主控因素分析:以鄂尔多斯盆地长7储层为例[J]. 天然气地球科学, 2016, 27(5):827-834.
doi: 10.11764/j.issn.1672-1926.2016.05.0827 |
SHI Jianchao, QU Xuefeng, LEI Qihong, et al. Distribution characteristics and controlling factors of movable fluid in tight oil reservoir:A case study of Chang7 reservoir in Ordos Basin[J]. Natural Gas Geoscience, 2016, 27(5):827-834.
doi: 10.11764/j.issn.1672-1926.2016.05.0827 |
|
[21] |
郭睿良, 陈小东, 马晓峰, 等. 鄂尔多斯盆地陇东地区延长组长7段致密储层水平向可动流体特征及其影响因素分析[J]. 天然气地球科学, 2018, 29(5):665-674.
doi: 10.11764/j.issn.1672-1926.2018.04.009 |
GUO Ruiliang, CHEN Xiaodong, MA Xiaofeng, et al. Analysis of the characteristics and its influencing factors of horizontal movable fluid in the Chang 7 tight reservoir in Longdong area,Ordos Basin[J]. Natural Gas Geoscience, 2018, 29(5):665-674.
doi: 10.11764/j.issn.1672-1926.2018.04.009 |
|
[22] | 白云云, 孙卫, 任大忠. 马岭油田致密砂岩储层可动流体赋存特征及控制因素[J]. 断块油气田, 2018, 25(4):455-458. |
BAI Yunyun, SUN Wei, REN Dazhong. Characteristics and controlling factors of movable fluid in low-permeability and tight sandstone reservoirs in Maling oilfield[J]. Fault-Block Oil & Gas Field, 2018, 25(4):455-458. | |
[23] | 王亚, 葛丽珍, 路研, 等. 基于核磁共振驱替实验的低渗透砂岩流体可动性及剩余油赋存特征研究[J]. 油气地质与采收率, 2023, 30(6):22-31. |
WANG Ya, GE Lizhen, LU Yan, et al. Study on fluid mobility and occurrence characteristics of remaining oil in low-permeability sandstone reservoirs based on nuclear magnetic resonance displacement experiments[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(6):22-31. |
[1] | ZHANG Yongqiang, ZHANG Xiaobin, XUE Shuwen, XU Feiyan. Mechanism of Microbially Activated Water Flooding in Ultra-Low Permeability Reservoirs [J]. Xinjiang Petroleum Geology, 2025, 46(3): 338-343. |
[2] | HU Xiangyang, WU Jian, YANG Dong, ZHANG Heng, TAN Wei, YUAN Wei. Lower Limits of Physical and Electrical Properties of Low to Ultra-Low Permeability Gas Reservoirs [J]. Xinjiang Petroleum Geology, 2025, 46(1): 29-38. |
[3] | CHEN Xiaodong, WANG Jin, SONG Peng, LIU Jian, YANG Weiguo, ZHANG Baojuan. Experimental Study on CO2 Flooding and Storage in Chang 8 Ultra-Low Permeability Reservoir in District Huang 3,Jiyuan Oilfield [J]. Xinjiang Petroleum Geology, 2023, 44(5): 592-597. |
[4] | SU Zezhong, WU Desheng, LIU Liang, ZHU Jianhong, LIU Xiong. Evaluation of Injection-Production Effect of Chang 63 Ultra-Low Permeability Reservoir in Jiyuan Oilfield [J]. Xinjiang Petroleum Geology, 2021, 42(4): 450-455. |
[5] | WANG Dongming. Development of Ultra-Low Permeability and Strong Water Sensitivity Reservoirs in Deep Strata of Shuang229-Wa111 Blocks [J]. Xinjiang Petroleum Geology, 2020, 41(4): 464-470. |
[6] | CHENG Jiecheng1, JIANG Hongfu2, LEI Youzhong1, PANG Zhiqing1, WANG Yanyong1, AN Ping2. Study on Miscible CO2 Flooding Test in Strong Water-Sensitive Reservoirs in Sudert Oilfield [J]. , 2016, 37(6): 1-1. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||