| [1] |
崔景伟, 朱如凯, 杨智, 等. 国外页岩层系石油勘探开发进展及启示[J]. 非常规油气, 2015, 2(4):68-82.
|
|
CUI Jingwei, ZHU Rukai, YANG Zhi, et al. Progresses and enlightenment of overseas shale oil exploration and development[J]. Unconventonal Oil & Gas, 2015, 2(4):68-82.
|
| [2] |
慕倩, 李高仁, 张文静, 等. 基于核磁共振测井的致密砂岩储集层有效性评价[J]. 新疆石油地质, 2025, 46(1):121-126.
|
|
MU Qian, LI Gaoren, ZHANG Wenjing, et al. Evaluation of the effectiveness of tight sandstone reservoirs based on nuclear magnetic resonance logging[J]. Xinjiang Petroleum Geology, 2025, 46(1):121-126.
|
| [3] |
覃建华, 李映艳, 杜戈峰, 等. 基于核磁共振测井的页岩油产能分析及甜点评价[J]. 新疆石油地质, 2024, 45(3):317-326.
|
|
QIN Jianhua, LI Yingyan, DU Gefeng, et al. Analysis of shale oil productivity and sweet spot evaluation based on nuclear magnetic resonance logging[J]. Xinjiang Petroleum Geology, 2024, 45(3):317-326.
|
| [4] |
张文艺, 张冲, 孙康, 等. 提高薄储层测井曲线纵向分辨率方法研究进展综述[J]. 地球物理学进展, 2024, 39(1):291-304.
|
|
ZHANG Wenyi, ZHANG Chong, SUN Kang, et al. A review of research progress on methods for improving vertical resolution of logging curves in thin reservoirs[J]. Progress in Geophysics, 2024, 39(1):291-304.
|
| [5] |
刘露玲. 多道反褶积技术及其在电法测井资料处理中的应用[D]. 河北秦皇岛: 燕山大学, 2012.
|
|
LIU Luling. Multi-step deconvolution techniques and their application in the processing of electrical logging data[D]. Qinhuangdao, Hebei: Yanshan University, 2012.
|
| [6] |
CONAWAY J G. Direct determination of the gamma-ray logging system response function in field boreholes[J]. Geoexploration, 1980, 18(3):187-199.
|
| [7] |
FLAUM C, GALFORD J E, HASTINGS A. Enhanced vertical resolution processing of dual detector gamma-gamma density logs[J]. The Log Analyst, 1989, 30(3):139-149.
|
| [8] |
苏艳丽. 提高测井曲线分辨率的方法研究及应用[D]. 武汉: 长江大学, 2012.
|
|
SU Yanli. Research and application on methods to improve logging curve resolution[D]. Wuhan: Yangtze University, 2012.
|
| [9] |
刘国庆, 刘江, 张美玲, 等. 自然伽马测井曲线高分辨率处理方法[J]. 测井技术, 2002, 26(3):194-197.
|
|
LIU Guoqing, LIU Jiang, ZHANG Meiling, et al. High-resolution processing method for natural gamma logging curves[J]. Well Logging Technology, 2002, 26(3):194-197.
|
| [10] |
成楠楠. 提高薄层分辨率的方法研究[D]. 武汉: 长江大学, 2012.
|
|
CHENG Nannan. Research on methods to improve thin layer resolution[D]. Wuhan: Yangtze University, 2012.
|
| [11] |
文环明, 庄庆德, 马晓红. 测井曲线的分数布朗插值[J]. 测井技术, 2005, 29(5):48-51.
|
|
WEN Huanming, ZHUANG Qingde, MA Xiaohong. Fractional Brownian interpolation of logging curves[J]. Well Logging Technology, 2005, 29(5):48-51.
|
| [12] |
冯国庆, 杨琨, 陈忠强, 等. 提高测井曲线纵向分辨率的小波变换技术[J]. 新疆石油地质, 2004, 25(5):529-531.
|
|
FENG Guoqing, YANG Kun, CHEN Zhongqiang, et al. Wavelet transform technology for improving the vertical resolution of logging curves[J]. Xinjiang Petroleum Geology, 2004, 25(5):529-531.
|
| [13] |
史晓锋, 李铮, 易京兵. 应用小波分析改善随钻电阻率测量的纵向分辨率[J]. 西安石油学院学报(自然科学版), 2002, 17(6):28-31.
|
|
SHI Xiaofeng, LI Zheng, YI Jingbing. Application of wavelet analysis to improve the longitudinal resolution of logging-while-drilling resistivity measurements[J]. Journal of Xi’an Petroleum Institute (Natural Science Edition), 2002, 17(6):28-31.
|
| [14] |
李宁, 徐彬森, 武宏亮, 等. 人工智能在测井地层评价中的应用现状及前景[J]. 石油学报, 2021, 42(4):508-522.
|
|
LI Ning, XU Binsen, WU Hongliang, et al. Current status and prospects of artificial intelligence in well logging formation evaluation[J]. Acta Petrolei Sinica, 2021, 42(4):508-522.
|
| [15] |
曹志民, 丁璐, 韩建, 等. 基于集成机器学习的测井曲线大尺度差异超分辨[J]. 吉林大学学报(地球科学版), 2025, 55(2):670-685.
|
|
CAO Zhimin, DING Lu, HAN Jian, et al. Large-scale super-resolution of logging curves based on ensemble machine learning[J]. Journal of Jilin University (Earth Science Edition), 2025, 55(2):670-685.
|
| [16] |
高攀. 面向页岩储层精细描述的测井曲线超分辨方法研究[D]. 黑龙江大庆: 东北石油大学, 2022.
|
|
GAO Pan. Research on super-resolution methods for well logging curves oriented to fine description of shale reservoirs[D]. Daqing, Heilongjiang: Northeast Petroleum University, 2022.
|
| [17] |
肖佃师, 高阳, 彭寿昌, 等. 准噶尔盆地吉木萨尔凹陷混积岩孔喉系统分类及控制因素[J]. 石油勘探与开发, 2021, 48(4):719-731.
|
|
XIAO Dianshi, GAO Yang, PENG Shouchang, et al. Classification and controlling factors of the pore-throat system of the mixed sedimentary rocks in the Jimsar depression of the Junggar Basin[J]. Petroleum Exploration and Development, 2021, 48(4):719-731.
|
| [18] |
尚军, 南凯麒, 王明洋. 基于快速傅里叶变换与小波变换的GNSS坐标时序时空演化特征分析[J]. 天津城建大学学报, 2024, 30(6):410-418.
|
|
SHANG Jun, NAN Kaiqi, WANG Mingyang. Analysis of GNSS coordinate time series spatiotemporal evolution characteristics based on fast Fourier transform and wavelet transform[J]. Journal of Tianjin University of Urban Construction, 2024, 30(6):410-418.
|
| [19] |
陈嘉昊. 致密砂岩储层测井产能智能分类方法及应用[D]. 北京: 中国石油大学(北京), 2023.
|
|
CHEN Jiahao. Intelligent classification method and application of logging productivity for tight sandstone reservoirs[D]. Beijing: China University of Petroleum(Beijing), 2023.
|
| [20] |
孙昕远. 基于ReliefF特征选择及随机森林企业停运标记不合规识别方法[J]. 环境科学与技术, 2024, 47(11):229-236.
|
|
SUN Xinyuan. Method for identifying non-compliant enterprise shutdown marking based on ReliefF feature selection and random forest[J]. Environmental Science and Technology, 2024, 47(11):229-236.
|
| [21] |
赵文宽, 姚军. 一种基于决策树集成学习的测井曲线预测方法研究[C]// 中国石油学会石油物探专业委员会. 第三届中国石油物探学术年会论文集(四),2025:217-220.
|
|
ZHAO Wenkuan, YAO Jun. Research on a logging curve prediction method based on decision tree ensemble learning[C]// Chinese Petroleum Society. Petroleum Geophysical Professional Committee. Proceedings of the 3rd China Petroleum Geophysical Academic Annual Conference ( Ⅳ),2025:217-220.
|
| [22] |
郭风景, 王斌, 贾澎涛, 等. 基于梯度提升决策树的瓦斯浓度在线预测[J]. 中国煤炭, 2023, 49(10):61-67.
|
|
GUO Fengjing, WANG Bin, JIA Pengtao, et al. Online prediction of gas concentration based on gradient boosting decision trees[J]. China Coal, 2023, 49(10):61-67.
|
| [23] |
宋延杰, 刘英杰, 唐晓敏, 等. 基于Stacking算法集成学习的页岩油储层总有机碳含量评价方法[J]. 测井技术, 2024, 48(2):163-178.
|
|
SONG Yanjie, LIU Yingjie, TANG Xiaomin, et al. Evaluation method of total organic carbon content in shale based on Stacking algorithm ensemble learning[J]. Well Logging Technology, 2024, 48(2):163-178.
|
| [24] |
褚庆军, 葛云龙, 童茂松, 等. 基于XGBoost算法的岩性测井曲线预测方法[J]. 测井技术, 2024, 48(6):748-754.
|
|
CHU Qingjun, GE Yunlong, TONG Maosong, et al. Rock type logging curve prediction method based on XGBoost algorithm[J]. Well Logging Technology, 2024, 48(6):748-754.
|