
新疆石油地质 ›› 2025, Vol. 46 ›› Issue (6): 668-683.doi: 10.7657/XJPG20250603
曹剑1(
), 秦志军2, 魏超1, 向宝力2,3, 刘金1,2,3
收稿日期:2025-11-02
修回日期:2025-11-13
出版日期:2025-12-01
发布日期:2025-12-05
作者简介:曹剑(1978-),男,江苏泰县人,教授,博士生导师,博士,石油地质学和有机地球化学,(Email)基金资助:
CAO Jian1(
), QIN Zhijun2, WEI Chao1, XIANG Baoli2,3, LIU Jin1,2,3
Received:2025-11-02
Revised:2025-11-13
Online:2025-12-01
Published:2025-12-05
摘要:
中国陆相页岩油已获重大突破,但陆相页岩普遍非均质性强,源储耦合关系复杂,页岩油甜点形成机理仍不够明确。以准噶尔盆地风城组为例,综合运用大视域薄片扫描、场发射扫描电镜-能谱分析、激光共聚焦观测、有机地球化学分析等技术,重点从页岩纹层特征及其对页岩油甜点的控制开展研究。结果表明,以风城组为代表的陆相页岩纹层发育,可划分为粉砂级长英质纹层、泥级长英质纹层、粉晶白云质纹层、粉晶方解石纹层、球粒状硅质纹层和碱类矿物纹层6种类型,主要有粉砂级+泥级长英质纹层和粉晶方解石/白云质纹层+泥级长英质纹层2类纹层组合页岩。不同纹层源储特征差异显著,泥级长英质纹层和球粒状硅质纹层有机质含量高,发育层状结构藻、红藻果孢子等优质生烃母质,是主要的生油层;粉砂级长英质纹层发育石英/长石晶间孔、长石粒内溶蚀孔等微纳米孔隙,游离油占比高,为优势储集层。多种类型纹层叠置,通过控制页岩有机-无机相互作用、储集空间特征和烃类微运移过程,最终导致不同层段页岩油差异富集,其中,粉砂级+泥级长英质纹层为最佳源储配置,整体含油性好且分布广泛,构成泥生砂储的富集模式,是勘探开发的有利目标。
中图分类号:
曹剑, 秦志军, 魏超, 向宝力, 刘金. 陆相纹层型页岩油源储耦合与甜点形成机理——以准噶尔盆地风城组为例[J]. 新疆石油地质, 2025, 46(6): 668-683.
CAO Jian, QIN Zhijun, WEI Chao, XIANG Baoli, LIU Jin. Source-Reservoir Coupling and Sweet Spot Formation Mechanism of Continental Laminated Shale Oil: A Case Study of the Fengcheng Formation, Junggar Basin[J]. Xinjiang Petroleum Geology, 2025, 46(6): 668-683.
图2
玛湖凹陷风城组纹层及岩相特征 a—纹层状长英质页岩,夏207井,4 940.4 m,岩心;b—纹层状长英质页岩,发育粉砂级长英质纹层和泥级长英质纹层,夏207井,4 940.4 m,单偏光;c—纹层状长英质页岩,夏207井,4 940.4 m,扫描电镜;d—纹层状长英质页岩,夏207井,4 940.4 m,能谱;e—纹层状灰云质页岩,夏203井,4 711.9 m,岩心;f—纹层状灰云质页岩,发育粉晶方解石/白云质纹层和泥级长英质纹层,夏203井,4 711.9 m,单偏光;g—纹层状灰云质页岩,夏203井,4 711.9 m,扫描电镜;h—纹层状灰云质页岩,夏203井,4 711.9 m,能谱;i—纹层状硅质页岩,夏203井,4 781.5 m,岩心;j—纹层状硅质页岩,发育球粒状硅质纹层和泥级长英质纹层,夏203井,4 781.5 m,单偏光;k—纹层状硅质页岩,夏203井,4 781.5 m,扫描电镜;l—纹层状硅质页岩,夏203井,4 781.5 m,能谱;m—块状粉砂岩/粉砂质页岩,玛页1井,4 693.3 m,岩心;n—块状粉砂岩/粉砂质页岩,发育大量粉砂级碎屑颗粒,单偏光;o—块状粉砂岩/粉砂质页岩,玛页1井,4 693.3 m,扫描电镜;p—块状粉砂岩/粉砂质页岩,玛页1井,4 693.3 m,能谱。"
图5
玛湖凹陷风城组典型纹层页岩荧光显微特征 a—粉砂级长英质纹层和泥级长英质纹层,玛页1井,4 764.6 m;b—泥级长英质纹层,发育大量层状结构藻,玛页1井,4 764.6 m;c—球粒状硅质纹层,发育大量红藻果孢子,夏203井,4 754.8 m;d—粉晶方解石纹层和泥级长英质纹层,玛页1井,4 788.4 m;e—泥级长英质纹层(含白云质),白云石晶间有机质分散分布,玛页1井,4 788.4 m;f—粉晶方解石纹层,烃类主要分布在晶间,呈黄绿色荧光,玛页1井,4 788.4 m;g—泥级长英质纹层和碱类矿物纹层,碱类矿物以硅硼钠石为主,夏207井,4 950.4 m;h—泥级长英质纹层(含白云质),发育藻席,呈橙色荧光,夏207井,4 950.4 m;i—硅硼钠石纹层,烃类主要分布在硅硼钠石晶间孔和内部解理缝,夏207井,4 950.4 m。"
表1
玛湖凹陷风城组不同纹层烃源岩特征、储集空间和含油性特征"
| 纹层类型 | 井名 | 深度/ m | 有机地球化学特征 | 储集特征 | 含油性 | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 总有机碳含量/% | S1/ (mg·g-1) | S2/ (mg·g-1) | 热解 峰温/ °C | 氢指数/ (mg·g-1) | 主要储集空间 | 平均孔隙直径/ nm | 含油饱和度 指数/ (mg·g-1) | CLSM 轻/重比 | |||
| 粉砂级长英质纹层 | 夏203井 | 4 678.7 | 0.90 | 1.86 | 1.36 | 436 | 151.1 | 长石粒内溶蚀孔、 粒间孔 | 665.3 | 206.7 | 1.32 |
| 夏203井 | 4 741.5 | 0.96 | 2.16 | 3.35 | 427 | 349.0 | 890.1 | 225.0 | 1.31 | ||
| 泥级长英质纹层 | 夏203井 | 4 678.7 | 3.06 | 10.02 | 12.98 | 434 | 424.2 | 石英/长石晶间孔、 粒内孔、顺层缝 | 351.4 | 327.5 | 0.88 |
| 夏203井 | 4 741.5 | 1.82 | 5.04 | 5.21 | 429 | 286.3 | 596.8 | 276.9 | 0.96 | ||
| 夏203井 | 4 711.9 | 2.78 | 5.68 | 11.08 | 433 | 398.6 | 501.2 | 204.3 | 1.14 | ||
| 粉晶方解石纹层 | 夏203井 | 4 711.9 | 1.06 | 2.25 | 2.28 | 432 | 215.1 | 石英晶间孔、 粒间孔 | 549.7 | 212.3 | 1.01 |
| 粉晶白云质纹层 | 夏207井 | 4 938.5 | 1.16 | 2.53 | 2.68 | 439 | 231.0 | 石英/长石晶间孔、 白云石粒内溶蚀孔 | 431.6 | 218.1 | 1.13 |
| 球粒状硅质纹层 | 夏203井 | 4 678.7 | 1.45 | 4.09 | 4.36 | 440 | 300.7 | 石英晶间孔 | 329.2 | 282.1 | 1.15 |
| 碱类矿物纹层 | 夏207井 | 4 942.2 | 0.97 | 1.25 | 2.58 | 437 | 266.0 | 硅硼钠石晶间孔 | 128.9 | 0.93 | |
| 夏207井 | 4 950.3 | 1.05 | 2.20 | 3.18 | 432 | 302.9 | 447.1 | 209.5 | 0.99 | ||
图7
玛湖凹陷风城组夏203井4 678.7 m处不同纹层页岩油赋存特征及差异 a—粉砂级长英质纹层,单偏光;b—粉砂级长英质纹层轻质和重质组分叠合,CLSM轻/重比为1.32,激光共聚焦;c—粉砂级长英质纹层轻质组分,激光共聚焦;d—粉砂级长英质纹层重质组分,激光共聚焦;e—泥级长英质纹层,单偏光;f—泥级长英质纹层轻质和重质组分叠合,CLSM轻/重比为0.90,激光共聚焦;g—泥级长英质纹层轻质组分,激光共聚焦;h—泥级长英质纹层重质组分,激光共聚焦;i—球粒状硅质纹层,单偏光;j—球粒状硅质纹层轻质和重质组分叠合,CLSM轻/重比为1.03,激光共聚焦;k—球粒状硅质纹层轻质组分,激光共聚焦;l—球粒状硅质纹层重质组分,激光共聚焦。"
表2
陆相不同沉积环境页岩纹层特征、源储条件与甜点评价"
| 沉积 环境 | 地区和 层位 | 纹层及岩相特征 | 烃源条件 | 储集物性 | 含油饱和度 指数/ (mg·g-1) | 源储关系 | 甜点优选 | ||
|---|---|---|---|---|---|---|---|---|---|
| 主要纹层组合 | 典型岩相 | 总有机碳 含量/% | 镜质体 反射率/ % | 孔隙度/ % | |||||
| 淡水 | 松辽盆地 青山口组 | 富黏土质+长英质纹层 | 纹层状长英质页岩、黏土质页岩 | 0.9~3.8 | 0.5~1.2 | 4.0~8.0 | 42.0~400.0 | 源储一体 | 纹层状长英质页岩 |
| 鄂尔多斯盆地延长组7段 | 富有机质+粉砂级长英质/凝灰质纹层 | 块状粉—细砂岩、 纹层状长英质页岩 | 5.0~38.0 | 0.7~1.3 | 5.0~12.0 | 27.0~380.0 | 源储分离、 源储一体 | 粉—细砂岩、纹层状长英质页岩 | |
| 半咸水—咸水 | 渤海湾盆地 沙河街组 | 富黏土质+粉晶方解石纹层 | 纹层状石灰质页岩、泥质石灰岩 | 1.0~4.0 | 0.5~1.2 | 3.0~16.0 | 50.0~300.0 | 源储共生 | 纹层状石灰质页岩 |
| 渤海湾盆地 孔店组二段 | 富黏土质+长英质/白云质纹层 | 纹层状白云质页岩、纹层状长英质页岩 | 2.0~6.0 | 0.5~1.1 | 3.1~5.7 | 23.6~753.6 | 源储共生 | 纹层状长英质/白云质页岩 | |
| 准噶尔盆地 芦草沟组 | 富凝灰质+长英质纹层/灰云质纹层 | 块状白云质粉砂岩、石灰质/白云质页岩 | 2.0~14.0 | 0.6~1.1 | 4.0~12.0 | 20.1~570.0 | 源储分离 | 块状白云质 粉砂岩 | |
| 碱湖 | 准噶尔盆地 风城组 | 泥级长英质+粉砂级长英质/灰云质纹层 | 纹层状长英质页岩、纹层状灰云质页岩(含碱) | 0.1~3.3 | 0.5~1.6 | 0.2~10.6 | 15.1~627.0 | 源储共生 | 纹层状长英质页岩 |
| [1] | JARVIE D M, HILL R J, RUBLE T E, et al. Unconventional shale-gas systems:The Mississippian Barnett shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin, 2007, 91(4):475-499. |
| [2] | GUO Xusheng, WANG Enze, MA Xiaoxiao, et al. Lacustrine shale oil systems in China:Advances in characterization methods and resource accumulation models[J]. Earth-Science Reviews, 2025,270:105256. |
| [3] | 贾承造, 王祖纲, 姜林, 等. 中国页岩油勘探开发研究进展与科学技术问题[J]. 世界石油工业, 2024, 31(4):1-11. |
| JIA Chengzao, WANG Zugang, JIANG Lin, et al. Progress and key scientific and technological problems of shale oil exploration and development in China[J]. World Petroleum Industry, 2024, 31(4):1-11. | |
| [4] | 朱筱敏, 王晓琳, 张美洲, 等. 中国典型陆相盆地细粒沉积环境和岩相特征[J]. 石油与天然气地质, 2024, 45(4):873-892. |
| ZHU Xiaomin, WANG Xiaolin, ZHANG Meizhou, et al. Sedimentary environments and lithofacies characteristics of fine-grained sediments in typical continental basins in China[J]. Oil & Gas Geology, 2024, 45(4):873-892. | |
| [5] | 金之钧, 张谦, 朱如凯, 等. 中国陆相页岩油分类及其意义[J]. 石油与天然气地质, 2023, 44(4):801-819. |
| JIN Zhijun, ZHANG Qian, ZHU Rukai, et al. Classification of lacustrine shale oil reservoirs in China and its significance[J]. Oil & Gas Geology, 2023, 44(4):801-819. | |
| [6] | 郭旭升, 胡宗全, 申宝剑, 等. 中国页岩油气源-储耦合类型划分及勘探意义[J]. 石油学报, 2024, 45(11):1565-1578. |
| GUO Xusheng, HU Zongquan, SHEN Baojian, et al. Classification and exploration significance of source-reservoir coupling types of shale oil and gas in China[J]. Acta Petrolei Sinica, 2024, 45(11):1565-1578. | |
| [7] | WANG Yuxuan, XU Shang, HAO Fang, et al. Multiscale petrographic heterogeneity and their implications for the nanoporous system of the Wufeng-Longmaxi shales in Jiaoshiba area,southeast China:Response to depositional-diagenetic process[J]. GSA Bulletin, 2019,132:1704-1721. |
| [8] | LIU Bo, WANG Haoli, FU Xiaofei, et al. Lithofacies and depositional setting of a highly prospective lacustrine shale oil succession from the Upper Cretaceous Qingshankou formation in the Gulong sag,northern Songliao Basin,northeast China[J]. AAPG Bulletin, 2019,103:405-432. |
| [9] | ZHANG Tongwei, FU Qilong, SUN Xun, et al. Meter-scale lithofacies cycle and controls on variations in oil saturation,Wolfcamp A,Delaware and Midland Basins[J]. AAPG Bulletin, 2021,105:1821-1846. |
| [10] | XIN B, ZHAO X, HAO F, et al. Laminae characteristics of lacustrine shales from the Paleogene Kongdian formation in the Cangdong sag,Bohai Bay Basin,China:Why do laminated shales have better reservoir physical properties?[J]. International Journal of Coal Geology, 2022,260:104056. |
| [11] | CAO Yingchang, XI Kelai, NIU Xiaobing, et al. Lamina-scale diagenetic mass transfer in lacustrine organic-rich shales and impacts on shale oil reservoir formation[J]. AAPG Bulletin, 2024,108:1327-1356. |
| [12] | LIANG Chao, CAO Yingchang, LIU Keyu, et al. Diagenetic variation at the lamina scale in lacustrine organic-rich shales:Implications for hydrocarbon migration and accumulation[J]. Geochimica et Cosmochimica Acta, 2018,229:112-128. |
| [13] | 李士祥, 郭芪恒, 潘松圻, 等. 烃类源内微运移对页理型页岩油差异富集的影响:以鄂尔多斯盆地三叠系延长组长73亚段为例[J]. 中国石油勘探, 2023, 28(4):46-54. |
| LI Shixiang, GUO Qiheng, PAN Songqi, et al. Influence of intrasource micro-migration of hydrocarbons on the differential enrichment of laminated type shale oil:A case study of the third sub-member of the seventh member of the Triassic Yanchang formation in Ordos Basin[J]. China Petroleum Exploration, 2023, 28(4):46-54. | |
| [14] | 赵文智, 朱如凯, 刘伟, 等. 中国陆相页岩油勘探理论与技术进展[J]. 石油科学通报, 2023, 8(4):373-390. |
| ZHAO Wenzhi, ZHU Rukai, LIU Wei, et al. Advances in theory and technology of non-marine shale oil exploration in China[J]. Petroleum Science Bulletin, 2023, 8(4):373-390. | |
| [15] | SHI Juye, JIN Zhijun, LIU Quanyou, et al. Laminar characteristics of lacustrine organic-rich shales and their significance for shale reservoir formation:A case study of the Paleogene shales in the Dongying sag,Bohai Bay Basin,China[J]. Journal of Asian Earth Sciences, 2022,223:104976. |
| [16] | 葸克来, 李克, 操应长, 等. 鄂尔多斯盆地三叠系延长组长73亚段富有机质页岩纹层组合与页岩油富集模式[J]. 石油勘探与开发, 2020, 47(6):1244-1255. |
| XI Kelai, LI Ke, CAO Yingchang, et al. Laminae combination and shale oil enrichment patterns of Chang 73 sub-member organic-rich shales in the Triassic Yanchang formation,Ordos Basin,NW China[J]. Petroleum Exploration and Development, 2020, 47(6):1244-1255. | |
| [17] | 唐勇, 何文军, 姜懿洋, 等. 准噶尔盆地二叠系咸化湖相页岩油气富集条件与勘探方向[J]. 石油学报, 2023, 44(1):125-143. |
| TANG Yong, HE Wenjun, JIANG Yiyang, et al. Enrichment conditions and exploration direction of Permian saline lacustrine shale oil and gas in Junggar Basin[J]. Acta Petrolei Sinica, 2023, 44(1):125-143. | |
| [18] | 姜福杰, 胡美玲, 胡涛, 等. 准噶尔盆地玛湖凹陷风城组页岩油富集主控因素与模式[J]. 石油勘探与开发, 2023, 50(4):706-718. |
| JIANG Fujie, HU Meiling, HU Tao, et al. Major controlling factors and model of shale oil enrichment in Lower Permian Fengcheng formation,Mahu sag,Junggar Basin,NW China[J]. Petroleum Exploration and Development, 2023, 50(4):706-718. | |
| [19] | 金之钧, 梁新平, 王小军, 等. 玛湖凹陷风城组页岩油富集机制与甜点段优选[J]. 新疆石油地质, 2022, 43(6):631-639. |
| JIN Zhijun, LIANG Xinping, WANG Xiaojun, et al. Shale oil enrichment mechanism and sweet spot selection of Fengcheng formation in Mahu sag,Junggar Basin[J]. Xinjiang Petroleum Geology, 2022, 43(6):631-639. | |
| [20] | 曹剑, 张瑞杰, 支东明, 等. 碱湖烃源岩有机-无机相互作用与控烃机理[J]. 中国科学:地球科学, 2025, 55(5):1619-1641. |
| CAO Jian, ZHANG Ruijie, ZHI Dongming, et al. Unique bimodal oil generation of alkaline-saline lacustrine source rock:Evidences,model and mechanism of organic-inorganic interactions[J]. Science China Earth Sciences, 2025, 55(5):1619-1641. | |
| [21] | WANG Song, WANG Guiwen, HUANG Liliang, et al. Logging evaluation of lamina structure and reservoir quality in shale oil reservoir of Fengcheng formation in Mahu sag,China[J]. Marine and Petroleum Geology, 2021,133:105299. |
| [22] | 邹阳, 韦盼云, 曹元婷, 等. 碱湖型页岩油“甜点”分类与主控因素:以准噶尔盆地风城组为例[J]. 石油学报, 2023, 44(3):458-470. |
| ZOU Yang, WEI Panyun, CAO Yuanting, et al. Classification and main controlling factors of sweet spots of alkaline lake type shale oil:A case study of Fengcheng formation in Junggar Basin[J]. Acta Petrolei Sinica, 2023, 44(3):458-470. | |
| [23] | GONG Deyu, BAI Lixun, GAO Zhiye, et al. Occurrence mechanisms of laminated-type and sandwich-type shale oil in the Fengcheng formation of Mahu sag,Junggar Basin[J]. Energy & Fuels, 2023,37:13960-13975. |
| [24] | LV Jiahao, HU Tao, ZHANG Wang, et al. Microscopic oil occurrence in the Permian alkaline lacustrine shales:Fengcheng formation,Mahu sag,Junggar Basin[J]. Petroleum Science, 2025,22:1407-1427. |
| [25] | JIANG C, WANG G, SONG L, et al. Identification of fluid types and their implications for petroleum exploration in the shale oil reservoir:A case study of the Fengcheng formation in the Mahu sag,Junggar Basin,northwest China[J]. Marine and Petroleum Geology, 2023,147. |
| [26] | 何登发, 吴松涛, 赵龙, 等. 环玛湖凹陷二叠—三叠系沉积构造背景及其演化[J]. 新疆石油地质, 2018, 39(1):35-47. |
| HE Dengfa, WU Songtao, ZHAO Long, et al. Tectono-depositional setting and its evolution during Permian to Triassic around Mahu sag,Junggar Basin[J]. Xinjiang Petroleum Geology, 2018, 39(1):35-47. | |
| [27] | 曹剑, 雷德文, 李玉文, 等. 古老碱湖优质烃源岩:准噶尔盆地下二叠统风城组[J]. 石油学报, 2015, 36(7):781-790. |
| CAO Jian, LEI Dewen, LI Yuwen, et al. Ancient high quality alkaline lacustrine source rocks discovered in the Lower Permian Fengcheng formation,Junggar Basin[J]. Acta Petrolei Sinica, 2015, 36(7):781-790. | |
| [28] | CAO Jian, XIA Liuwen, WANG Tingting, et al. An alkaline lake in the Late Paleozoic Ice Age(LPIA):A review and new insights into paleoenvironment and petroleum geology[J]. Earth-Science Reviews, 2020,202:103091. |
| [29] | 唐勇, 郑孟林, 王霞田, 等. 准噶尔盆地玛湖凹陷风城组烃源岩沉积古环境[J]. 天然气地球科学, 2022, 33(5):677-692. |
| TANG Yong, ZHENG Menglin, WANG Xiatian, et al. Sedimentary paleoenvironment of source rocks of Fengcheng formation in Mahu sag,Junggar Basin[J]. Natural Gas Geoscience, 2022, 33(5):677-692. | |
| [30] | WANG Tingting, CAO Jian, CARROLL A R, et al. Oldest preserved sodium carbonate evaporite:Late Paleozoic Fengcheng formation,Junggar Basin,NW China[J]. GSA Bulletin, 2020,133:1465-1482. |
| [31] | 王小军, 王婷婷, 曹剑. 玛湖凹陷风城组碱湖烃源岩基本特征及其高效生烃[J]. 新疆石油地质, 2018, 39(1):9-15. |
| WANG Xiaojun, WANG Tingting, CAO Jian. Basic characteristics and highly effcient hydrocarbon generation of alkaline-lacustrine source rocks in Fengcheng formation of Mahu sag[J]. Xinjiang Petroleum Geology, 2018, 39(1):9-15. | |
| [32] | 支东明, 唐勇, 何文军, 等. 准噶尔盆地玛湖凹陷风城组常规-非常规油气有序共生与全油气系统成藏模式[J]. 石油勘探与开发, 2021, 48(1):38-51. |
| ZHI Dongming, TANG Yong, HE Wenjun, et al. Orderly coexistence and accumulation models of conventional and unconventional hydrocarbons in Lower Permian Fengcheng formation,Mahu sag,Junggar Basin[J]. Petroleum Exploration and Development, 2021, 48(1):38-51. | |
| [33] | 唐勇, 吕正祥, 何文军, 等. 准噶尔盆地玛湖凹陷二叠系风城组白云质岩储集层白云石成因[J]. 石油勘探与开发, 2023, 50(1):38-50. |
| TANG Yong, LYU Zhengxiang, HE Wenjun, et al. Origin of dolomites in the Permian dolomitic reservoirs of Fengcheng formation in Mahu sag,Junggar Basin,NW China[J]. Petroleum Exploration and Development, 2023, 50(1):38-50. | |
| [34] | 蒋启贵, 黎茂稳, 钱门辉, 等. 不同赋存状态页岩油定量表征技术与应用研究[J]. 石油实验地质, 2016, 38(6):842-849. |
| JIANG Qigui, LI Maowen, QIAN Menhui, et al. Quantitative characterization of shale oil in different occurrence states and its application[J]. Petroleum Geology & Experiment, 2016, 38(6):842-849. | |
| [35] | 王雅文, 杨升宇, 胡钦红, 等. 微型密闭玻璃管(MSSV)热模拟技术在油气地质研究中的应用[J]. 非常规油气, 2025, 12(3):1-13. |
| WANG Yawen, YANG Shengyu, HU Qinhong, et al. Application of MSSV thermal simulation technology in petroleum geology research[J]. Unconventional Oil & Gas, 2025, 12(3):1-13. | |
| [36] | 朱如凯, 李梦莹, 杨静儒, 等. 细粒沉积学研究进展与发展方向[J]. 石油与天然气地质, 2022, 43(2):251-264. |
| ZHU Rukai, LI Mengying, YANG Jingru, et al. Advances and trends of fine-grained sedimentology[J]. Oil & Gas Geology, 2022, 43(2):251-264. | |
| [37] | JARVIE D M. Shale resource systems for oil and gas:Part 1-shale-gas resource systems[J]. AAPG Memoir, 2012,97:69-87. |
| [38] | LAZAR O R, BOHACS K M, MACQUAKER J H S, et al. Capturing key attributes of fine-grained sedimentary rocks in outcrops,cores,and thin sections:Nomenclature and description guidelines[J]. Journal of Sedimentary Research, 2015,85:230-246. |
| [39] | PENG Junwen, HU Zongquan, FENG Dongjun. The classification scheme for fine-grained sedimentary rocks:A review and a new approach based on five inherent rock attributes[J]. Gondwana Research, 2025,145:107-141. |
| [40] | WAN Jialin, YU Zhichao, YUAN Yujie, et al. Laminae in multiple lithofacies and impact on pore structures in lacustrine shale:The Cretaceous Qingshankou formation,Songliao Basin[J]. Marine and Petroleum Geology, 2025,174:107321. |
| [41] | LIU Guoping, JIN Zhijun, ZENG Lianbo, et al. Laminar controls on bedding-parallel fractures in Permian lacustrine shales,Junggar Basin,northwestern China[J]. Geological Society of America Bulletin, 2025,137:3512-3526. |
| [42] | MCHENRY L J. Element mobility during zeolitic and argillic alteration of volcanic ash in a closed-basin lacustrine environment:Case study Olduvai Gorge,Tanzania[J]. Chemical Geology, 2009,265:540-552. |
| [43] | KIROV G, ŠAMAJOVA E, NEDIALKOV R, et al. Alteration processes and products of acid pyroclastic rocks in Bulgaria and Slovakia[J]. Clay Minerals, 2018, 46(2):279-294. |
| [44] | LI Zilong, XI Kelai, CAO Yingchang, et al. Origin and controls on shale oil enrichment of bedding-parallel fractures in the Chang 73 lacustrine shales,Yanchang formation,Ordos Basin[J]. Marine and Petroleum Geology, 2025,182:107590. |
| [45] | 金之钧, 王冠平, 刘光祥, 等. 中国陆相页岩油研究进展与关键科学问题[J]. 石油学报, 2021, 42(7):821-835. |
| JIN Zhijun, WANG Guanping, LIU Guangxiang, et al. Research progress and key scientific issues of continental shale oil in China[J]. Acta Petrolei Sinica, 2021, 42(7):821-835. | |
| [46] | MACKENZIE A C, LEYTHAEUSER D, MULLER P, et al. The movement of hydrocarbons in shales[J]. Nature, 1988,331:63-65. |
| [47] | GAO Zhiye, BAI Lixun, HU Qinhong, et al. Shale oil migration across multiple scales:A review of characterization methods and different patterns[J]. Earth-Science Reviews, 2024,254:104819. |
| [48] | SHAO Deyong, ZHANG Tongwei, MILLIKEN K L, et al. Evolution of a microfracture network induced by hydrocarbon generation during experimental maturation of organic-rich lacustrine shale[J]. Geology, 2025, 53(9):737-742. |
| [49] | 吴松涛, 朱如凯, 罗忠, 等. 中国中西部盆地典型陆相页岩纹层结构与储层品质评价[J]. 中国石油勘探, 2022, 27(5):62-72. |
| WU Songtao, ZHU Rukai, LUO Zhong, et al. Laminar structure of typical continental shales and reservoir quality evaluation in central-western basins in China[J]. China Petroleum Exploration, 2022, 27(5):62-72. | |
| [50] | JI Wenming, HAO Fang, GONG Fanhao, et al. Petroleum migration and accumulation in a shale oil system of the Upper Cretaceous Qingshankou formation in the Songliao Basin,northeastern China[J]. AAPG Bulletin, 2024,108:1611-1648. |
| [51] | 李军亮, 王民, 秦峰, 等. 陆相富碳酸盐页岩纹层组合对页岩油富集的控制作用:以渤海湾盆地济阳坳陷古近系沙河街组页岩为例[J]. 石油与天然气地质, 2025, 46(2):392-406. |
| LI Junliang, WANG Min, QIN Feng, et al. Controlling effects of lamina assemblages on shale oil enrichment for lacustrine carbonate-rich shales:A case study of shales in the Paleogene Shahejie formation,Jiyang depression,Bohai Bay Basin[J]. Oil & Gas Geology, 2025, 46(2):392-406. | |
| [52] | 赵贤正, 蒲秀刚, 金凤鸣, 等. 黄骅坳陷页岩型页岩油富集规律及勘探有利区[J]. 石油学报, 2023, 44(1):158-175. |
| ZHAO Xianzheng, PU Xiugang, JIN Fengming, et al. Enrichment law and favorable exploration area of shale-type shale oil in Huanghua depression[J]. Acta Petrolei Sinica, 2023, 44(1):158-175. |
| [1] | 金之钧, 曹琰, 张虹, 唐勇, 秦志军, 刘扣其, 梁成钢, 李关访, 何文军. 吉木萨尔凹陷芦草沟组页岩油甜点主控因素研究与实践[J]. 新疆石油地质, 2025, 46(6): 647-658. |
| [2] | 刘金, 白雷, 张宝真, 魏超, 雷海艳, 邓远, 曹剑. 吉木萨尔凹陷芦草沟组页岩油微观赋存特征与开采动态响应[J]. 新疆石油地质, 2025, 46(6): 684-692. |
| [3] | 邹阳, 陈文顺, 罗刚, 陈绍蓉, 陈方文, 何文军, 刘新龙, 朱涛. 玛湖凹陷风城组碱湖页岩油富集和高产主控因素[J]. 新疆石油地质, 2025, 46(6): 693-702. |
| [4] | 魏兆胜, 齐洪岩, 赵建飞, 何吉祥, 刘可成, 王俊超. 准噶尔盆地页岩油开发进展及效益建产关键技术[J]. 新疆石油地质, 2025, 46(6): 703-711. |
| [5] | 刘向君, 甘仁忠, 熊健, 汤诗棋, 万有维, 周鑫, 梁利喜, 张淼. 吉木萨尔凹陷芦草沟组页岩油储层体积改造主控地质力学因素[J]. 新疆石油地质, 2025, 46(6): 723-733. |
| [6] | 李映艳, 丁艺, 罗刚, 丁怀宇, 唐慧莹, 贺戈. 基于地质工程一体化的井网-缝网协同优化——以准噶尔盆地吉木萨尔凹陷页岩油为例[J]. 新疆石油地质, 2025, 46(6): 742-753. |
| [7] | 杜雪彪, 张金风, 肖佃师, 冉阳, 刘英杰, 秦嘉敏, 王良哲. 基于ReliefF和LSBoost集成树核磁有效孔隙度频谱预测及分辨率匹配研究[J]. 新疆石油地质, 2025, 46(6): 762-772. |
| [8] | 姚菊琴, 陈刚, 唐廷明, 赵春雪, 李维, 余雪峰, 于江龙. 点复数谱提频方法在吉木萨尔页岩油甜点预测中的应用[J]. 新疆石油地质, 2025, 46(6): 773-778. |
| [9] | 毛锐, 尉珈敏, 王盼, 李晴晴, 赵磊. 玛湖凹陷风城组页岩油储集层关键参数测井评价方法[J]. 新疆石油地质, 2025, 46(6): 779-789. |
| [10] | 齐洪岩, 王振林, 张艳宁, 蔺敬旗, 胡旋, 苏静, 徐睿, 曹志锋. 吉木萨尔凹陷芦草沟组页岩油藏甜点分类[J]. 新疆石油地质, 2025, 46(2): 127-135. |
| [11] | 杨旺旺, 王振林, 苏静, 胡旋, 黄玉越, 赖锦, 王贵文. 玛湖凹陷风城组页岩油赋存空间特征及可动性影响因素[J]. 新疆石油地质, 2025, 46(2): 192-200. |
| [12] | 黄后传, 曹晓璐, 李宁, 加玉锋, 吴国龙, 巨世昌. 金龙2井区致密油藏井间压窜识别及分析[J]. 新疆石油地质, 2025, 46(2): 201-207. |
| [13] | 牛君, 王聪, 梁飞. 绿泥石与浊沸石矿物特征及其对储集层物性的影响——以准噶尔盆地陆梁隆起西部下乌尔禾组为例[J]. 新疆石油地质, 2025, 46(1): 13-21. |
| [14] | 王春伟, 杨俊, 赵东睿, 杜焕福, 孙鑫, 王晔磊, 孟方华. 准噶尔盆地永进—征沙村地区侏罗系超深层致密砂岩储集层分级评价[J]. 新疆石油地质, 2025, 46(1): 48-56. |
| [15] | 何昌松, 王秉乾, 魏双宝, 蒲振山, 王力龙, 马强, 张伟. 准噶尔盆地石钱滩凹陷石钱滩组地质特征及油气勘探[J]. 新疆石油地质, 2024, 45(6): 642-649. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||