新疆石油地质 ›› 2010, Vol. 31 ›› Issue (4): 386-387.

• 油气勘探 • 上一篇    下一篇

川西沙溪庙组气藏储集层流体密度反演

李曙光, 徐天吉   

  1. 中国石化 西南油气分公司 勘探开发研究院 德阳分院,四川 德阳 618000
  • 收稿日期:2010-03-16 发布日期:2020-10-19
  • 作者简介:李曙光(1983-),男,湖南望城人,硕士,地球物理勘探,(Tel)15884299502(E-mail)lishuguang1983@gmail.com.

Fluid-Density Inversion of Shaximiao Gas Reservoir in Western Sichuan Area

LI Shu-guang, XU Tian-ji   

  1. Deyang Branch, Research Institute of Exploration and Development, Southwest Oil-Gas Field Company, Sinopec, Deyang, Sichuan, 618000, China
  • Received:2010-03-16 Published:2020-10-19

摘要: 流体密度从富气层到水层变化明显,是预测储集层含气性的一个绝好参数。利用井上的密度测井数据和孔隙度,根据密度—孔隙度的最小二乘反演方法,计算得到井上各储集层的流体密度值。在基于概率神经网络的反演方法下,由井上流体密度和三维地震数据,反演得到三维空间的流体密度。将该方法应用于川西某气田的沙溪庙组气藏,取得了很好的效果,为该区块的储集层预测、气水识别和油气藏描述提供了重要的数据支持。

关键词: 四川盆地, 沙溪庙组, 气藏, 流体, 密度, 神经网络, 反演

Abstract: The fluid-density changes from rich gas reservoir to water layer obviously, so it is a nice parameter of reservoir gas forecasting. This paper presents the method for calculating the fluid-density values of each reservoir using density logging and porosity data, according to the density-porosity least-square inversion method, calculated the fluid-density of reservoir in well. The inversed three dimensional fluiddensity results can be obtained based on the probabilistic neural network inversion method, and using the well fluid-density data and three dimensional seismic data. Application of this method to Shaximiao gas reservoir in a gas field of western Sichuan area has achieved very good results, providing important data support for reservoir prediction, gas-water identification and gas reservoir description in this area.

Key words: Sichuan, fluid, density, neural network, inversion

中图分类号: