新疆石油地质 ›› 2025, Vol. 46 ›› Issue (2): 181-191.doi: 10.7657/XJPG20250207
赵吉儿1(), 冉崎1, 谢冰1(
), 赖强1, 白利1, 朱迅2
收稿日期:
2024-12-04
修回日期:
2024-12-16
出版日期:
2025-04-01
发布日期:
2025-03-26
通讯作者:
谢冰(1973-),男,重庆人,高级工程师,测井综合评价及地质应用,(Tel)13608070104(Email)xxb-th@petrochina.com.cn
作者简介:
赵吉儿(1997-),女,陕西西安人,工程师,博士,核磁共振测井与解释方法评价,(Tel)19863757550(Email)基金资助:
ZHAO Ji’er1(), RAN Qi1, XIE Bing1(
), LAI Qiang1, BAI Li1, ZHU Xun2
Received:
2024-12-04
Revised:
2024-12-16
Online:
2025-04-01
Published:
2025-03-26
摘要: 四川盆地下侏罗统凉高山组页岩储集层发育,孔隙为纳米级,具有低孔低渗、孔隙类型多样、孔隙结构复杂及孔隙半径分布范围广的特点,因此,准确评价页岩储集层孔隙结构对储集层评价和甜点区优选具有重要意义。综合扫描电镜、气体吸附和核磁共振实验资料,对凉高山组不同岩相的孔隙结构进行表征,研究N2和CO2吸附的孔隙半径分布计算模型,确定不同孔隙半径与横向弛豫时间的转换参数,即表面弛豫速率,实现不同岩相全尺寸孔隙半径表征,同时研究表面弛豫速率与矿物含量的关系。结果表明:表面弛豫速率与石英、斜长石和方解石含量成反比,表面弛豫速率与钾长石、菱铁矿和黏土矿物含量成正比;绿泥石、黄铁矿和菱铁矿属于顺磁性物质,随着顺磁性离子浓度增大,矿物磁化率增大,从而增大表面弛豫速率。
中图分类号:
赵吉儿, 冉崎, 谢冰, 赖强, 白利, 朱迅. 四川盆地凉高山组全尺寸孔隙半径分布表征方法[J]. 新疆石油地质, 2025, 46(2): 181-191.
ZHAO Ji’er, RAN Qi, XIE Bing, LAI Qiang, BAI Li, ZHU Xun. Characterization Method for Full-Size Pore Radius Distribution in Lianggaoshan Formation, Sichuan Basin[J]. Xinjiang Petroleum Geology, 2025, 46(2): 181-191.
[1] | 欧阳嘉穗. 川北阆中地区侏罗系页岩油气地质特征及勘探潜力[J]. 中国石油和化工标准与质量, 2022, 42(12):100-102. |
OUYANG Jiasui. Geological characteristics and exploration potential of Jurassic shale oil and gas in the Langzhong area of north Sichuan[J]. China Petroleum and Chemical Standard and Quality, 2022, 42(12):100-102. | |
[2] |
洪海涛, 张少敏, 张芮, 等. 四川盆地凉高山组层序地层格架及有利勘探区优选[J]. 特种油气藏, 2023, 30(2):58-64.
doi: 10.3969/j.issn.1006-6535.2023.02.008 |
HONG Haitao, ZHANG Shaomin, ZHANG Rui, et al. Establishment of sequence stratigraphic framework and optimization of favorable exploration areas of Lianggaoshan formation,Sichuan Basin[J]. Special Oil & Gas Reservoirs, 2023, 30(2):58-64. | |
[3] | 胡东风, 李真祥, 魏志红, 等. 四川盆地北部地区巴中1HF井侏罗系河道砂岩油气勘探突破及意义[J]. 天然气工业, 2023, 43(3):1-11. |
HU Dongfeng, LI Zhenxiang, WEI Zhihong, et al. Breakthrough in oil and gas exploration of Jurassic channel sandstone in Well Bazhong 1HF in northern Sichuan Basin and its significance[J]. Natural Gas Industry, 2023, 43(3):1-11. | |
[4] |
李鹏飞. 四川盆地页岩气立体开发缝控压裂技术应用[J]. 特种油气藏, 2023, 30(2):168-174.
doi: 10.3969/j.issn.1006-6535.2023.02.024 |
LI Pengfei. Application of fracture-controlled fracturing technology in tridimensional development of shale gas in Sichuan Basin[J]. Special Oil & Gas Reservoirs, 2023, 30(2):168-174. | |
[5] | 蒋奇君, 李勇, 肖正录, 等. 川中地区大安寨段页岩热演化史及油气地质意义[J]. 新疆石油地质, 2024, 45(3):262-270. |
JIANG Qijun, LI Yong, XIAO Zhenglu, et al. Thermal evolution history of shale in Da’anzhai member and its petroleum geological significance in central Sichuan Basin[J]. Xinjiang Petroleum Geology, 2024, 45(3):262-270. | |
[6] |
沈童, 卢文涛, 郑爱维, 等. 四川盆地复兴地区侏罗系陆相页岩油可采储量评价方法[J]. 天然气勘探与开发, 2024, 47(5):39-47.
doi: 10.12055/gaskk.issn.1673-3177.2024.05.005 |
SHEN Tong, LU Wentao, ZHENG Aiwei, et al. An integrated method for estimating recoverable reserves of Jurassic continental shale oil in Fuxing area,Sichuan Basin[J]. Natural Gas Exploration and Development, 2024, 47(5):39-47.
doi: 10.12055/gaskk.issn.1673-3177.2024.05.005 |
|
[7] |
白桦, 洪海涛, 邱玉超, 等. 基于地震相分析的四川盆地侏罗系凉高山组湖盆演化及页岩发育区预测[J]. 天然气勘探与开发, 2024, 47(6):8-17.
doi: 10.12055/gaskk.issn.1673-3177.2024.06.002 |
BAI Hua, HONG Haitao, QIU Yuchao, et al. Seismic facies to analyze lacustrine-basin evolution and predict shale blocks extended into the Jurassic Lianggaoshan formation,Sichuan Basin[J]. Natural Gas Exploration and Development, 2024, 47(6):8-17.
doi: 10.12055/gaskk.issn.1673-3177.2024.06.002 |
|
[8] |
郭旭升, 魏志红, 魏祥峰, 等. 四川盆地侏罗系陆相页岩油气富集条件及勘探方向[J]. 石油学报, 2023, 44(1):14-27.
doi: 10.7623/syxb202301002 |
GUO Xusheng, WEI Zhihong, WEI Xiangfeng, et al. Enrichment conditions and exploration direction of Jurassic continental shale oil and gas in Sichuan Basin[J]. Acta Petrolei Sinica, 2023, 44(1):14-27.
doi: 10.7623/syxb202301002 |
|
[9] | 郭旭升, 赵永强, 张文涛, 等. 四川盆地元坝地区千佛崖组页岩油气富集特征与主控因素[J]. 石油实验地质, 2021, 43(5):749-757. |
GUO Xusheng, ZHAO Yongqiang, ZHANG Wentao, et al. Accumulation conditions and controlling factors for the enrichment of shale oil and gas in the Jurassic Qianfoya formation,Yuanba area,Sichuan Basin[J]. Petroleum Geology & Experiment, 2021, 43(5):749-757. | |
[10] | 邵广辉, 高衍武, 蔺敬旗, 等. 玛湖凹陷二叠系风城组页岩油储层微观孔隙结构精细表征[J]. 长江大学学报(自然科学版), 2023, 20(1):48-55. |
SHAO Guanghui, GAO Yanwu, LIN Jingqi, et al. The fine characterization of micro-pore structure of shale oil reservoir in Permian Fengcheng formation of Mahu sag[J]. Journal of Yangtze University(Natural Science Edition), 2023, 20(1):48-55. | |
[11] | LI Jinbu, LU Shuangfang, JIANG Chunqing, et al. Characterization of shale pore size distribution by NMR considering the influence of shale skeleton signals[J]. Energy & Fuels, 2019, 33(7):6361-6372. |
[12] | 龚小平, 唐洪明, 赵峰, 等. 四川盆地龙马溪组页岩储层孔隙结构的定量表征[J]. 岩性油气藏, 2016, 28(3):48-57. |
GONG Xiaoping, TANG Hongming, ZHAO Feng, et al. Quantitative characterization of pore structure in shale reservoir of Longmaxi formation in Sichuan Basin[J]. Lithologic Reservoirs, 2016, 28(3):48-57.
doi: 10.3969/j.issn.1673-8926.2016.03.008 |
|
[13] |
方锐, 蒋裕强, 杨长城, 等. 四川盆地侏罗系凉高山组页岩油地质特征[J]. 中国石油勘探, 2023, 28(4):66-78.
doi: 10.3969/j.issn.1672-7703.2023.04.007 |
FANG Rui, JIANG Yuqiang, YANG Changcheng, et al. Geological characteristics of shale oil in the Jurassic Lianggaoshan formation in Sichuan Basin[J]. China Petroleum Exploration, 2023, 28(4):66-78.
doi: 10.3969/j.issn.1672-7703.2023.04.007 |
|
[14] | 何文渊, 何海清, 王玉华, 等. 川东北地区平安1井侏罗系凉高山组页岩油重大突破及意义[J]. 中国石油勘探, 2022, 27(1):40-49. |
HE Wenyuan, HE Haiqing, WANG Yuhua, et al. Major breakthrough and significance of shale oil of the Jurassic Lianggaoshan formation in Well Ping’an 1 in northeastern Sichuan Basin[J]. China Petroleum Exploration, 2022, 27(1):40-49.
doi: 10.3969/j.issn.1672-7703.2022.01.004 |
|
[15] | 杨跃明, 文龙, 王兴志, 等. 四川盆地下侏罗统大安寨段页岩油气地质特征及勘探有利区优选[J]. 天然气工业, 2023, 43(4):32-42. |
YANG Yueming, WEN Long, WANG Xingzhi, et al. Geological characteristics and favorable exploration area selection of shale oil and gas of the Lower Jurassic Da’anzhai member in the Sichuan Basin[J]. Natural Gas Industry, 2023, 43(4):32-42. | |
[16] | 杨跃明, 黄东. 四川盆地侏罗系湖相页岩油气地质特征及勘探开发新认识[J]. 天然气工业, 2019, 39(6):22-33. |
YANG Yueming, HUANG Dong. Geological characteristics and new understandings of exploration and development of Jurassic lacustrine shale oil and gas in the Sichuan Basin[J]. Natural Gas Industry, 2019, 39(6):22-33. | |
[17] |
周克明, 袁小玲, 刘婷芝, 等. 四川盆地公山庙油田中侏罗统沙溪庙组一段致密油藏流体渗流特征[J]. 天然气勘探与开发, 2024, 47(1):73-82.
doi: 10.12055/gaskk.issn.1673-3177.2024.01.009 |
ZHOU Keming, YUAN Xiaoling, LIU Tingzhi, et al. Fluid flow behaviors in tight reservoirs of the Middle Jurassic Shaximiao 1 member,Gongshanmiao oilfield,Sichuan Basin[J]. Natural Gas Exploration and Development, 2024, 47(1):73-82.
doi: 10.12055/gaskk.issn.1673-3177.2024.01.009 |
|
[18] |
李秀清, 邹娟, 李雪松, 等. 川中地区侏罗系大安寨段储层可动用性渗流实验[J]. 天然气勘探与开发, 2022, 45(4):111-120.
doi: 10.12055/gaskk.issn.1673-3177.2022.04.014 |
LI Xiuqing, ZOU Juan, LI Xuesong, et al. Recoverability experiment of reservoirs in the Jurassic Da’anzhai member of central Sichuan Basin[J]. Natural Gas Exploration and Development, 2022, 45(4):111-120.
doi: 10.12055/gaskk.issn.1673-3177.2022.04.014 |
|
[19] | 庞铭, 陈华兴, 唐洪明, 等. 海相页岩与陆相页岩微观孔隙结构差异:以川南龙马溪组、鄂尔多斯延长组为例[J]. 天然气勘探与开发, 2018, 41(2):29-36. |
PANG Ming, CHEN Huaxing, TANG Hongming, et al. Differences of micropore structure between marine shale and continental shale:Examples from Longmaxi formation in southern Sichuan Basin and Yanchang formation in Ordos Basin[J]. Natural Gas Exploration and Development, 2018, 41(2):29-36. | |
[20] | 李廷微. 沾化凹陷页岩储层孔隙结构特征及其对含油性的控制[D]. 北京: 中国石油大学(北京), 2018. |
LI Tingwei. Pore structure characteristics of shale reservoirs and their effects on oil-bearing properties in the Zhanhua sag[D]. Beijing: China University of Petroleum(Beijing), 2018. | |
[21] | 赵迪斐. 川东下古生界五峰组—龙马溪组页岩储层孔隙结构精细表征[D]. 江苏徐州: 中国矿业大学, 2020. |
ZHAO Difei. Quantitative characterization of pore structure of shale reservoirs in the Lower Paleozoic Wufeng-Longmaxi formation of the east Sichuan area[D]. Xuzhou, Jiangsu: China University of Mining and Technology, 2020. | |
[22] | 彭女佳. 鄂西渝东地区五峰组—龙马溪组一段页岩气储层孔隙结构及分形特征研究[D]. 武汉: 中国地质大学(武汉), 2019. |
PENG Nvjia. Pore structure and fractal characteristics of Wufeng and lower member of Longmaxi shales in western Hubei and eastern Chongqing regions[D]. Wuhan: China University of Geosciences(Wuhan), 2019. | |
[23] | 李映艳, 邓远, 徐田录, 等. 吉木萨尔凹陷页岩油赋存特征及含油下限[J]. 东北石油大学学报, 2022, 46(6):52-62. |
LI Yingyan, DENG Yuan, XU Tianlu, et al. Occurrence characteristics of shale oil and lower-limit of oil-bearing in Jimsar sag[J]. Journal of Northeast Petroleum University, 2022, 46(6):52-62. | |
[24] | 鲁锋, 李照阳, 杨召, 等. 激光扫描共聚焦显微分析技术表征页岩亚微米级孔隙中的含油性:以准噶尔盆地芦草沟组页岩为例[J]. 石油实验地质, 2023, 45(1):193-202. |
LU Feng, LI Zhaoyang, YANG Zhao, et al. Characterization of oil-bearing properties in sub-micron shale pores by laser scanning confocal microscopy technology:A case study of shale in Lucaogou formation,Junggar Basin[J]. Petroleum Geology & Experiment, 2023, 45(1):193-202. | |
[25] | KLEINBERG R L, HORSFIELD M A. Transverse relaxation processes in porous sedimentary rock[J]. Journal of Magnetic Resonance, 1990, 88(1):9-19. |
[26] | RYLANDER E, SINGER P M, JIANG Tianmin, et al. NMR T2 distributions in the Eagle Ford shale:Reflections on pore size[C]. Texas, USA: SPE Unconventional Resources Conference/Gas Technology Symposium, 2013. |
[27] | TANDON S, HEIDARI Z, DAIGLE H. Pore-scale evaluation of nuclear magnetic resonance measurements in organic-rich mudrocks using numerical modeling[C]. Texas, USA: SPE/AAPG/SEG Unconventional Resources Technology Conference, 2017. |
[28] | TANDON S, HEIDARI Z, JAGADISAN A. Quantifying the mechanisms contributing to surface relaxation of protons in kerogen pores of organic-rich mudrocks[C]. Texas, USA: SPE/AAPG/SEG Unconventional Resources Technology Conference, 2018. |
[29] | YUAN Yujie, REZAEE R. Impact of paramagnetic minerals on NMR-converted pore size distributions in Permian Carynginia shales[J]. Energy & Fuels, 2019, 33(4):2880-2887. |
[30] | 覃建华, 李映艳, 杜戈峰, 等. 基于核磁共振测井的页岩油产能分析及甜点评价[J]. 新疆石油地质, 2024, 45(3):317-326. |
QIN Jianhua, LI Yingyan, DU Gefeng, et al. NMR logging-based productivity analysis and sweet spot evaluation for shale oil[J]. Xinjiang Petroleum Geology, 2024, 45(3):317-326. | |
[31] | 赵吉儿, 葛新民, 肖玉峰, 等. 含裂缝页岩核磁共振横向弛豫响应正演模拟及T2谱特征分析[J]. 地球物理学报, 2023, 66(6):2621-2630. |
ZHAO Jier, GE Xinmin, XIAO Yufeng, et al. Forward simulation and characteristic analysis on the low field NMR transverse relaxation response of fractured shale reservoir[J]. Chinese Journal of Geophysics, 2023, 66(6):2621-2630. | |
[32] | BRYAR T R, DAUGHNEY C J, KNIGHT R J. Paramagnetic effects of iron(Ⅲ) species on nuclear magnetic relaxation of fluid protons in porous media[J]. Journal of Magnetic Resonance, 2000,142:74-85. |
[33] | DASTIDAR R, SONDERGELD C H, RAI C S. NMR desaturation and surface relaxivity measurements on clastic rocks[C]. Vienna, Austria: SPE Europec/EAGE Conference and Exhibition SPE, 2006. |
[34] | FLEURY M. NMR relaxation and petrophysical properties[J]. AIP Conference Proceedings, 2011,1330:9-12. |
[35] | KORB J P, GODEFROY S, FLEURY M. Surface nuclear magnetic relaxation and dynamics of water and oil in granular packings and rocks[J]. Magnetic Resonance Imaging, 2003,21:193-199. |
[36] | LI Chenglin, TAN Maojin, WANG Zhizhan, et al. Nuclear magnetic resonance pore radius transformation method and fluid mobility characterization of shale oil reservoirs[J]. Geoenergy Science and Engineering, 2023,221:211403. |
[37] | BHATT J S, MCDONALD P J, FAUX D A, et al. NMR relaxation parameters from molecular simulations of hydrated inorganic nanopores[J]. International Journal of Quantum Chemistry, 2014, 114(18):1220-1228. |
[38] | GE Xinmin, MYERS M T, LIU Jianyu, et al. Determining the transverse surface relaxivity of reservoir rocks:A critical review and perspective[J]. Marine and Petroleum Geology, 2021,126:104934. |
[39] | YUAN Yujie, REZAEE R, ZHOU Meifu, et al. A comprehensive review on shale studies with emphasis on nuclear magnetic resonance (NMR) technique[J]. Gas Science and Engineering, 2023,120:205163. |
[40] | LIU Yong, YAO Yanbin, LIU Dameng, et al. Shale pore size classification:An NMR fluid typing method[J]. Marine and Petroleum Geology, 2018,96:591-601. |
[41] | CHENG Jiuhui, XIA Xuanzhe, WANG Linlin. Determining nuclear magnetic resonance surface relaxivity of shales[J]. Energy & Fuels, 2023, 37(7):4986-4995. |
[1] | 李皋, 上官自然, 杨旭, 李红涛, 李泽, 王秋彤. 蓬莱气区射洪—盐亭区块灯四段储集层构造裂缝预测[J]. 新疆石油地质, 2025, 46(2): 136-143. |
[2] | 王雯清, 彭磊, 石华强, 侯瑞, 高辉, 王琛, 李腾. 鄂尔多斯盆地北部与西南部地区二叠系山1段可动流体差异分析[J]. 新疆石油地质, 2025, 46(2): 172-180. |
[3] | 慕倩, 李高仁, 张文静, 迟瑞强. 基于核磁共振测井的致密砂岩储集层有效性评价[J]. 新疆石油地质, 2025, 46(1): 121-126. |
[4] | 刘洪林, 鲁眈, 梁峰, 何新兵, 李刚权, 赵群, 拜文华. 贵州安场地区页岩气田地质特征及开发技术[J]. 新疆石油地质, 2025, 46(1): 78-87. |
[5] | 蒋奇君, 李勇, 肖正录, 路俊刚, 秦春雨, 张少敏. 川中地区大安寨段页岩热演化史及油气地质意义[J]. 新疆石油地质, 2024, 45(3): 262-270. |
[6] | 程丽, 严伟, 李娜. 陆相页岩储集层含水饱和度测井计算方法——以川东南复兴区块凉高山组为例[J]. 新疆石油地质, 2024, 45(3): 371-377. |
[7] | 刘洪林, 王怀厂, 李晓波. 泸州地区五峰组—龙马溪组页岩气成藏特征[J]. 新疆石油地质, 2024, 45(1): 19-26. |
[8] | 王挺, 汪杰, 江厚顺, 续化蕾, 姚自义, 南冲. 页岩水平井水力压裂裂缝扩展及防窜三维地质模拟[J]. 新疆石油地质, 2023, 44(6): 720-728. |
[9] | 孔祥晔, 曾溅辉, 罗群, 谭杰, 张芮, 王鑫, 王乾右. 川中地区大安寨段陆相页岩岩相对孔隙结构的控制作用[J]. 新疆石油地质, 2023, 44(4): 392-403. |
[10] | 周新锐, 王喜鑫, 李少华, 张昌民, 胡凯, 严春景, 倪雪儿. 陆相混积型页岩储集层孔隙结构特征及其控制因素[J]. 新疆石油地质, 2023, 44(4): 411-420. |
[11] | 周云秋, 贺锡雷, 林凯, 秦思萍, 张陈强, 刘宗杰. 基于动态有效应力系数的地层压力估算方法[J]. 新疆石油地质, 2023, 44(2): 245-251. |
[12] | 张德梅, 段朝伟, 李高仁, 李永胜, 陆敬武, 林伟川. 华池—南梁油田长8油藏高阻水层解释方法[J]. 新疆石油地质, 2023, 44(1): 105-111. |
[13] | 刘财广, 季瑞雪, 王伟, 张融. 玛湖凹陷风城组页岩油产量影响因素及甜点评价[J]. 新疆石油地质, 2022, 43(6): 733-742. |
[14] | 于淑艳, 汪洋, 冯宏业, 朱洪建. 川东北城口地区筇竹寺组页岩流变对孔隙结构的影响[J]. 新疆石油地质, 2022, 43(5): 513-518. |
[15] | 谢强, 李皋, 彭红利, 何龙, 龚汉渤. 川西彭州地区雷四段储集层构造裂缝特征及定量预测[J]. 新疆石油地质, 2022, 43(5): 519-525. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||