
新疆石油地质 ›› 2025, Vol. 46 ›› Issue (3): 388-394.doi: 10.7657/XJPG20250317
• 应用技术 • 上一篇
        
               		陈霖a(
), 许倩雯b, 陈坤a, 陈小东a, 刘文c, 文林c, 刘斌c
                  
        
        
        
        
    
收稿日期:2024-11-18
									
				
											修回日期:2024-12-24
									
				
									
				
											出版日期:2025-06-01
									
				
											发布日期:2025-06-13
									
			作者简介:陈霖(1988-),男,四川资阳人,工程师,硕士,油藏开发地质,(Tel)18629303463(Email)基金资助:
        
               		CHEN Lina(
), XU Qianwenb, CHEN Kuna, CHEN Xiaodonga, LIU Wenc, WEN Linc, LIU Binc
			  
			
			
			
                
        
    
Received:2024-11-18
									
				
											Revised:2024-12-24
									
				
									
				
											Online:2025-06-01
									
				
											Published:2025-06-13
									
			摘要:
超低渗油藏通常采用水驱开发,而水驱开发的驱替界限影响因素较复杂,为了研究超低渗储集层水驱驱替界限的表征方法,根据性质将孔隙度、渗透率、孔喉半径、均质系数等12个参数划分为孔渗类、非均质类以及孔喉半径类;运用Pearson相关系数法,从不同类参数中选出最优表征参数,并根据优选的表征参数构建驱替界限特征指数;通过水驱实验获得不同岩心的驱替界限,根据驱替界限与特征指数的拟合效果确定表征模型。结果表明,渗透率、变异系数以及加权平均孔喉半径能有效表征超低渗储集层水驱驱替界限,将驱替界限与特征指数进行拟合,可建立有效的超低渗储集层驱替界限表征模型。
中图分类号:
陈霖, 许倩雯, 陈坤, 陈小东, 刘文, 文林, 刘斌. 超低渗储集层水驱驱替界限表征方法[J]. 新疆石油地质, 2025, 46(3): 388-394.
CHEN Lin, XU Qianwen, CHEN Kun, CHEN Xiaodong, LIU Wen, WEN Lin, LIU Bin. A Displacement Limit Characterization Method for Waterflooding in Ultra-Low Permeability Reservoirs[J]. Xinjiang Petroleum Geology, 2025, 46(3): 388-394.
表1
研究区孔喉结构特征参数统计"
| 岩心 编号  |  渗透率/ mD  |  孔隙度/ %  |  结构 系数  |  均质 系数  |  孔喉中值 半径/μm  |  最大孔喉 半径/μm  |  平均孔喉 半径/μm  |  孔喉半径 均值  |  分选 系数  |  变异 系数  |  歪度 系数  |  峰态 系数  | 
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 0.69 | 10.5 | 0.2 | 0.28 | 0.09 | 0.40 | 0.11 | 12.5 | 1.3 | 0.10 | 0.2 | 0.9 | 
| 2 | 0.36 | 11.0 | 1.4 | 0.28 | 0.15 | 0.69 | 0.19 | 12.1 | 1.8 | 0.15 | 0.3 | 0.7 | 
| 3 | 0.15 | 6.9 | 0.9 | 0.10 | 0.06 | 1.24 | 0.12 | 12.9 | 1.7 | 0.13 | -0.1 | 0.8 | 
| 4 | 0.31 | 13.4 | 1.2 | 0.16 | 0.10 | 0.92 | 0.15 | 12.4 | 1.6 | 0.13 | 0.1 | 0.9 | 
| 5 | 0.56 | 8.5 | 0.3 | 0.19 | 0.07 | 0.69 | 0.13 | 12.6 | 1.6 | 0.13 | 0 | 0.8 | 
| 6 | 0.26 | 11.8 | 1.2 | 0.21 | 0.09 | 0.71 | 0.15 | 12.4 | 1.6 | 0.13 | 0 | 0.8 | 
| 7 | 0.35 | 8.9 | 0.3 | 0.16 | 0.06 | 0.60 | 0.09 | 13.1 | 1.4 | 0.11 | 0 | 0.9 | 
| 8 | 0.38 | 6.7 | 0.1 | 0.13 | 0.05 | 0.45 | 0.06 | 13.5 | 1.0 | 0.07 | 0.2 | 1.1 | 
| 9 | 0.23 | 10.5 | 1.5 | 0.20 | 0.11 | 0.80 | 0.16 | 12.4 | 1.8 | 0.14 | 0.2 | 0.8 | 
| 10 | 0.71 | 6.0 | 0.2 | 0.14 | 0.05 | 0.94 | 0.13 | 13.1 | 1.9 | 0.14 | -0.3 | 0.9 | 
| 11 | 0.05 | 7.5 | 9.8 | 0.18 | 0.14 | 1.23 | 0.22 | 12.2 | 2.0 | 0.16 | 0.2 | 0.7 | 
| 12 | 0.70 | 7.2 | 0.0 | 0.07 | 0.03 | 0.68 | 0.05 | 14.3 | 1.0 | 0.07 | -0.1 | 1.5 | 
| 13 | 0.49 | 6.2 | 0.2 | 0.16 | 0.04 | 0.76 | 0.12 | 13.0 | 1.8 | 0.14 | -0.3 | 0.8 | 
| 14 | 0.87 | 9.5 | 0.3 | 0.18 | 0.09 | 0.85 | 0.15 | 12.5 | 1.7 | 0.13 | 0.1 | 0.9 | 
| 15 | 0.54 | 16.4 | 0.5 | 0.17 | 0.06 | 0.69 | 0.12 | 12.7 | 1.3 | 0.10 | -0.3 | 0.8 | 
| 16 | 0.07 | 12.1 | 7.7 | 0.23 | 0.14 | 0.86 | 0.19 | 12.1 | 1.7 | 0.14 | 0.2 | 0.8 | 
| 17 | 0.37 | 12.2 | 0.3 | 0.17 | 0.07 | 0.54 | 0.09 | 12.9 | 1.2 | 0.09 | 0.2 | 1.0 | 
| 18 | 0.51 | 11.8 | 0.5 | 0.19 | 0.09 | 0.70 | 0.13 | 12.5 | 1.6 | 0.12 | 0.1 | 0.9 | 
| 19 | 0.08 | 5.7 | 3.8 | 0.30 | 0.16 | 0.69 | 0.21 | 12.0 | 1.7 | 0.15 | 0.3 | 0.8 | 
| 20 | 0.32 | 6.3 | 0.4 | 0.18 | 0.06 | 0.70 | 0.13 | 12.8 | 1.7 | 0.13 | -0.1 | 0.8 | 
| 21 | 0.05 | 6.2 | 1.2 | 0.10 | 0.05 | 0.82 | 0.09 | 13.1 | 1.2 | 0.09 | -0.1 | 1.3 | 
| 22 | 0.22 | 11.5 | 5.5 | 0.30 | 0.28 | 0.96 | 0.29 | 11.6 | 1.9 | 0.17 | 0.5 | 0.7 | 
| 23 | 0.05 | 9.1 | 1.8 | 0.15 | 0.06 | 0.57 | 0.08 | 13.1 | 1.3 | 0.10 | 0 | 1.2 | 
| 24 | 0.33 | 10.9 | 0.5 | 0.22 | 0.07 | 0.48 | 0.10 | 12.7 | 1.2 | 0.10 | -0.1 | 0.9 | 
| 25 | 0.17 | 11.4 | 1.7 | 0.20 | 0.08 | 0.70 | 0.14 | 12.5 | 1.7 | 0.13 | 0 | 0.8 | 
| 26 | 0.25 | 8.9 | 1.2 | 0.18 | 0.09 | 0.95 | 0.17 | 12.6 | 1.9 | 0.15 | 0 | 0.7 | 
| 27 | 0.06 | 7.5 | 1.9 | 0.20 | 0.07 | 0.55 | 0.11 | 12.9 | 1.6 | 0.12 | 0 | 0.8 | 
| 28 | 0.27 | 9.1 | 1.0 | 0.19 | 0.08 | 0.83 | 0.15 | 12.5 | 1.8 | 0.14 | 0 | 0.8 | 
| 29 | 0.06 | 5.1 | 0.3 | 0.11 | 0.03 | 0.50 | 0.05 | 14.0 | 1.2 | 0.09 | -0.2 | 1.3 | 
| 30 | 0.08 | 7.7 | 1.1 | 0.21 | 0.05 | 0.46 | 0.09 | 13.0 | 1.5 | 0.11 | -0.2 | 0.9 | 
| 31 | 0.47 | 10.2 | 0.4 | 0.27 | 0.09 | 0.43 | 0.12 | 12.7 | 1.5 | 0.12 | 0.2 | 0.8 | 
| 32 | 0.04 | 6.9 | 3.0 | 0.25 | 0.10 | 0.48 | 0.12 | 12.6 | 1.5 | 0.12 | 0.2 | 0.9 | 
| 33 | 0.23 | 12.3 | 0.8 | 0.22 | 0.08 | 0.49 | 0.11 | 12.7 | 1.4 | 0.11 | 0 | 1.0 | 
| 34 | 0.17 | 9.3 | 1.5 | 0.21 | 0.08 | 0.72 | 0.15 | 12.6 | 1.8 | 0.14 | 0 | 0.7 | 
| 35 | 0.19 | 10.4 | 1.1 | 0.21 | 0.08 | 0.59 | 0.13 | 12.7 | 1.6 | 0.13 | 0 | 0.8 | 
| [1] | 连建文, 汪耀宗, 杨继光. 水驱曲线标定技术可采储量的极限含水率[J]. 新疆石油地质, 2024, 45(6):687-695. | 
| LIAN Jianwen, WANG Yaozong, YANG Jiguang. Determination of limit water cut of technically recoverable reserves calibrated by water drive curve[J]. Xinjiang Petroleum Geology, 2024, 45(6):687-695. | |
| [2] | 项燚伟, 彭港珍, 温中林, 等. 适用于有水气藏的新型水驱特征曲线应用[J]. 科学技术与工程, 2024, 24(29):12524-12530. | 
| XIANG Yiwei, PENG Gangzhen, WEN Zhonglin, et al. Application of new waterflooding characteristic curve for water-bearing gas reservoirs[J]. Science Technology and Engineering, 2024, 24(29):12524-12530. | |
| [3] | 黄映仕, 缪云, 徐伟, 等. 一种基于两点法求解井网密度与采收率关系的方法[J]. 石油化工应用, 2023, 42(9):25-28. | 
| HUANG Yingshi, MIAO Yun, XU Wei, et al. A method for solving the relationship between well pattern density and oil recovery based on two-point method[J]. Petrochemical Industry Application, 2023, 42(9):25-28. | |
| [4] | 王桐, 金心岫, 陈雅彤. 青平川油区长2油藏水驱采收率计算及评价[J]. 石油地质与工程, 2022, 36(6):67-71. | 
| WANG Tong, JIN Xinxiu, CHEN Yatong. Water drive recovery calculation and evaluation of Chang 2 reservoir in Qingpingchuan oil area[J]. Petroleum Geology and Engineering, 2022, 36(6):67-71. | |
| [5] | 冯波, 刘万涛, 刘广峰, 等. 陇东长7致密油藏气驱喉道动用半径下限[J]. 大庆石油地质与开发, 2019, 38(3):159-166. | 
| FENG Bo, LIU Wantao, LIU Guangfeng, et al. Developed radius limit for the throat by the gas flooding in Longdong Chang-7 tight oil reservoir[J]. Petroleum Geology & Oilfield Development in Daqing, 2019, 38(3):159-166. | |
| [6] | 卢振东, 刘成林, 臧起彪, 等. 高压压汞与核磁共振技术在致密储层孔隙结构分析中的应用:以鄂尔多斯盆地合水地区为例[J]. 地质科技通报, 2022, 41(3):300-310. | 
| LU Zhendong, LIU Chenglin, ZANG Qibiao, et al. Application of high pressure mercury injection and nuclear magnetic resonance in analysis of the pore structure of dense sandstone:A case study of the Heshui area,Ordos Basin[J]. Bulletin of Geological Science and Technology, 2022, 41(3):300-310. | |
| [7] | 王波, 郭强, 王春伟, 等. 基于低场核磁共振的致密储层孔隙结构特征及流体可动性研究:以敦煌盆地五墩凹陷侏罗系为例[J]. 西北地质, 2024, 57(5):156-165. | 
| WANG Bo, GUO Qiang, WANG Chunwei, et al. Pore structure characteristics and fluid mobility of tight reservoir based on nuclear magnetic resonance:A case study of Jurassic in Wudun sag,Dunhuang Basin[J]. Northwestern Geology, 2024, 57(5):156-165. | |
| [8] | 李爱芬, 任晓霞, 王桂娟, 等. 核磁共振研究致密砂岩孔隙结构的方法及应用[J]. 中国石油大学学报(自然科学版), 2015, 39(6):92-98. | 
| LI Aifen, REN Xiaoxia, WANG Guijuan, et al. Characterization of pore structure of low permeability reservoirs using a nuclear magnetic resonance method[J]. Journal of China University of Petroleum(Edition of Natural Science), 2015, 39(6):92-98. | |
| [9] | 武轶凡, 杨文宇, 李渊. 基于低场核磁共振的煤岩孔裂隙结构定量表征[J]. 科学技术与工程, 2024, 24(25):10739-10745. | 
| WU Yifan, YANG Wenyu, LI Yuan. Quantitative characterization of coal pore and fracture structure based on low-field nuclear magnetic resonance[J]. Science Technology and Engineering, 2024, 24(25):10739-10745. | |
| [10] | 白振强, 王清华, 宋文波. 基于核磁共振的天然气驱储集层孔喉动用下限[J]. 新疆石油地质, 2023, 44(1):58-63. | 
| BAI Zhenqiang, WANG Qinghua, SONG Wenbo. Lower limits of pore throat producing in natural gas drive reservoirs based on nuclear magnetic resonance[J]. Xinjiang Petroleum Geology, 2023, 44(1):58-63. | |
| [11] | 任颖惠, 吴珂, 何康宁, 等. 核磁共振技术在研究超低渗-致密油储层可动流体中的应用:以鄂尔多斯盆地陇东地区延长组为例[J]. 矿物岩石, 2017, 37(1):103-110. | 
| REN Yinghui, WU Ke, HE Kangning, et al. Application of NMR technique to movable fluid of ultra-low permeability and tight reservoir:A case study on the Yanchang formation in Longdong area,Ordos Basin[J]. Journal of Mineralogy and Petrology, 2017, 37(1):103-110. | |
| [12] | 喻建, 杨孝, 李斌, 等. 致密油储层可动流体饱和度计算方法:以合水地区长7致密油储层为例[J]. 石油实验地质, 2014, 36(6):767-772. | 
| YU Jian, YANG Xiao, LI Bin, et al. A method of determining movable fluid saturation of tight oil reservoirs:A case study of tight oil reservoirs in seventh member of Yanchang formation in Heshui area[J]. Petroleum Geology & Experiment, 2014, 36(6):767-772. | |
| [13] | 廖璐璐, 李根生, 曾义金, 等. 基于数据挖掘与机器学习技术的低渗储层产量预测[J]. 长江大学学报(自然科学版), 2023, 20(5):91-97. | 
| LIAO Lulu, LI Gensheng, ZENG Yijin, et al. Production prediction of low permeability reservoir based on data mining and machine learning technology[J]. Journal of Yangtze University(Natural Science Edition), 2023, 20(5):91-97. | |
| [14] | 王殿武, 赵云斌, 尚丽英, 等. 皮尔逊相关系数算法在B油田优选化学防砂措施井的应用[J]. 精细与专用化学品, 2022, 30(7):26-28. | 
| WANG Dianwu, ZHAO Yunbin, SHANG Liying, et al. Application of Pearson correlation coefficient algorithm in selecting chemical sand control measure wells in B oilfield[J]. Fine and Specialty Chemicals, 2022, 30(7):26-28. | |
| [15] | 饶扬. 长垣西部葡萄花油层复杂油水层识别方法研究[D]. 湖北荆州: 长江大学, 2021. | 
| RAO Yang. Study on identification method of complex oil-water layer of Putaohua oil layer in the western Changyuan[D]. Jingzhou,Hubei: Yangtze University, 2021. | |
| [16] | 闫健, 秦大鹏, 王平平, 等. 鄂尔多斯盆地致密砂岩储层可动流体赋存特征及其影响因素[J]. 油气地质与采收率, 2020, 27(6):47-56. | 
| YAN Jian, QIN Dapeng, WANG Pingping, et al. Occurrence characteristics and main controlling factors of movable fluid in tight sandstone reservoirs in Ordos Basin[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(6):47-56. | |
| [17] |  
											  石立华, 师调调, 廖志昊, 等. 低渗致密砂岩油藏水驱储层变化规律[J]. 特种油气藏, 2024, 31(3):106-115. 
											 												 doi: 10.3969/j.issn.1006-6535.2024.03.014  | 
										
| SHI Lihua, SHI Tiaotiao, LIAO Zhihao, et al. The variation law of water flooding reservoir in low permeability tight sandstone reservoirs[J]. Special Oil & Gas Reservoirs, 2024, 31(3):106-115. | |
| [18] | 付兰清. 致密砂岩动态渗吸排驱核磁共振在线实验:以松辽盆地北部扶余油层为例[J]. 大庆石油地质与开发, 2023, 42(3):66-74. | 
| FU Lanqing. NMR online experiment for dynamic imbibition drainage of tight sandstone:A case study of Fuyu reservoir in northern Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2023, 42(3):66-74. | |
| [19] | 陈洪才, 王昭凯, 金忠康, 等. 中低渗砂岩油藏水驱后期油藏再评价及提高采收率对策[J]. 特种油气藏, 2024, 31(4):133-141. | 
| CHEN Hongcai, WANG Zhaokai, JIN Zhongkang, et al. Re-evaluation of medium-low permeability sandstone reservoirs in the later stage of water flooding and strategies to improve recovery efficiency[J]. Special Oil & Gas Reservoirs, 2024, 31(4):133-141. | |
| [20] |  
											  时建超, 屈雪峰, 雷启鸿, 等. 致密油储层可动流体分布特征及主控因素分析:以鄂尔多斯盆地长7储层为例[J]. 天然气地球科学, 2016, 27(5):827-834. 
											 												 doi: 10.11764/j.issn.1672-1926.2016.05.0827  | 
										
|  
											  SHI Jianchao, QU Xuefeng, LEI Qihong, et al. Distribution characteristics and controlling factors of movable fluid in tight oil reservoir:A case study of Chang7 reservoir in Ordos Basin[J]. Natural Gas Geoscience, 2016, 27(5):827-834. 
											 												 doi: 10.11764/j.issn.1672-1926.2016.05.0827  | 
										|
| [21] |  
											  郭睿良, 陈小东, 马晓峰, 等. 鄂尔多斯盆地陇东地区延长组长7段致密储层水平向可动流体特征及其影响因素分析[J]. 天然气地球科学, 2018, 29(5):665-674. 
											 												 doi: 10.11764/j.issn.1672-1926.2018.04.009  | 
										
|  
											  GUO Ruiliang, CHEN Xiaodong, MA Xiaofeng, et al. Analysis of the characteristics and its influencing factors of horizontal movable fluid in the Chang 7 tight reservoir in Longdong area,Ordos Basin[J]. Natural Gas Geoscience, 2018, 29(5):665-674. 
											 												 doi: 10.11764/j.issn.1672-1926.2018.04.009  | 
										|
| [22] | 白云云, 孙卫, 任大忠. 马岭油田致密砂岩储层可动流体赋存特征及控制因素[J]. 断块油气田, 2018, 25(4):455-458. | 
| BAI Yunyun, SUN Wei, REN Dazhong. Characteristics and controlling factors of movable fluid in low-permeability and tight sandstone reservoirs in Maling oilfield[J]. Fault-Block Oil & Gas Field, 2018, 25(4):455-458. | |
| [23] | 王亚, 葛丽珍, 路研, 等. 基于核磁共振驱替实验的低渗透砂岩流体可动性及剩余油赋存特征研究[J]. 油气地质与采收率, 2023, 30(6):22-31. | 
| WANG Ya, GE Lizhen, LU Yan, et al. Study on fluid mobility and occurrence characteristics of remaining oil in low-permeability sandstone reservoirs based on nuclear magnetic resonance displacement experiments[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(6):22-31. | 
| [1] | 曹江骏, 张道锋, 王继平, 周游, 李笑天, 李娅, 范倩倩, 董倩云. 庆阳气田山1段差异性成岩作用及其对储集层的影响[J]. 新疆石油地质, 2025, 46(3): 296-307. | 
| [2] | 罗丽荣, 李剑锋, 朱静, 孔令印, 白嫦娥, 居迎军, 侯云超. 平凉北地区长8段油藏油源及其成藏模式[J]. 新疆石油地质, 2025, 46(3): 318-328. | 
| [3] | 龙盛芳, 侯云超, 赵玉华, 张杰, 郝金鑫, 谷兆兴. 鄂尔多斯盆地演武地区断裂特征及其对侏罗系油藏的影响[J]. 新疆石油地质, 2025, 46(3): 329-337. | 
| [4] | 黄有根, 郑小鹏, 张道锋, 胡薇薇, 何梦卿, 王冰. 鄂尔多斯盆地本溪组煤岩微观特征及气体赋存状态[J]. 新疆石油地质, 2025, 46(3): 253-262. | 
| [5] | 张正涛, 费世祥, 罗文琴, 钟广浩, 兰天君, 王晔, 崔越华, 汪淑洁, 张芳. 鄂尔多斯盆地东部本溪组煤岩气储集层评价及甜点区优选[J]. 新疆石油地质, 2025, 46(3): 263-272. | 
| [6] | 赵玉华, 王雅婷, 黄研, 赵德勇, 曹永亮. 鄂尔多斯盆地马家滩地区乌拉力克组页岩气藏甜点预测[J]. 新疆石油地质, 2025, 46(3): 273-279. | 
| [7] | 马志欣, 李进步, 付斌, 白慧, 李浮萍, 马生晖, 贾金娥. 苏里格气田二叠系山西组曲流河储集层岩相与构型[J]. 新疆石油地质, 2025, 46(3): 280-287. | 
| [8] | 杨龙, 朱玉双, 康永梅, 刘一婷, 包琛龙, 何辉. 演武油田延安组储集层特征及敏感性主控因素[J]. 新疆石油地质, 2025, 46(3): 288-295. | 
| [9] | 李弘艳, 刘军, 龚伟, 张荣. 顺北地区中—小尺度断控缝洞体地震预测[J]. 新疆石油地质, 2025, 46(2): 240-245. | 
| [10] | 齐洪岩, 王振林, 张艳宁, 蔺敬旗, 胡旋, 苏静, 徐睿, 曹志锋. 吉木萨尔凹陷芦草沟组页岩油藏甜点分类[J]. 新疆石油地质, 2025, 46(2): 127-135. | 
| [11] | 李皋, 上官自然, 杨旭, 李红涛, 李泽, 王秋彤. 蓬莱气区射洪—盐亭区块灯四段储集层构造裂缝预测[J]. 新疆石油地质, 2025, 46(2): 136-143. | 
| [12] | 李辉, 宁亚鑫. 超深层碳酸盐岩储集层天然裂缝发育差异性——以塔里木盆地YUEM地区为例[J]. 新疆石油地质, 2025, 46(2): 144-153. | 
| [13] | 王伟, 代梦莹, 陈俊凯, 邹云龙, 吴琼, 蒋琼, 冯程. 塔里木盆地英买35井区志留系隔夹层识别及分布[J]. 新疆石油地质, 2025, 46(2): 154-162. | 
| [14] | 王雯清, 彭磊, 石华强, 侯瑞, 高辉, 王琛, 李腾. 鄂尔多斯盆地北部与西南部地区二叠系山1段可动流体差异分析[J]. 新疆石油地质, 2025, 46(2): 172-180. | 
| [15] | 杨旺旺, 王振林, 苏静, 胡旋, 黄玉越, 赖锦, 王贵文. 玛湖凹陷风城组页岩油赋存空间特征及可动性影响因素[J]. 新疆石油地质, 2025, 46(2): 192-200. | 
| 阅读次数 | ||||||
| 
												        	全文 | 
											        	
												        	 | 
													|||||
| 
												        	摘要 | 
												        
															 | 
													|||||