Xinjiang Petroleum Geology ›› 2020, Vol. 41 ›› Issue (5): 575-581.doi: 10.7657/XJPG20200510
• RESERVOIR ENGINEERING • Previous Articles Next Articles
YE Liang1(), LI Xianwen1, MA Xinxing1, LI Sihai2(
), ZHAO Qianyun1, GE Qiang2
Received:
2019-11-25
Revised:
2020-06-30
Online:
2020-10-01
Published:
2020-10-10
Contact:
LI Sihai
E-mail:yliang01_cq@petrochina.com.cn;sihai199101@163.com
CLC Number:
YE Liang, LI Xianwen, MA Xinxing, LI Sihai, ZHAO Qianyun, GE Qiang. Experiments on Hydraulic Fracture Propagation in Tight Sandstones with Different Brittleness[J]. Xinjiang Petroleum Geology, 2020, 41(5): 575-581.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | 刘文锋, 张旭阳, 张小栓, 等. 致密油多段压裂水平井产能预测方法[J]. 新疆石油地质, 2019,40(6):731-735. |
LIU Wenfeng, ZHANG Xuyang, ZHANG Xiaoshuan, et al. A practical method to predict productivity of multistage fractured horizontal well in tight oil reservoirs[J]. Xinjiang Petroleum Geology, 2019,40(6):731-735. | |
[2] | 孙元伟, 程远方, 时凤霞, 等. 致密气藏压裂水平井产能分析及压裂优化设计[J]. 新疆石油地质, 2018,39(6):727-731 . |
SUN Yuanwei, CHENG Yuanfang, SHI Fengxia, et al. Productivity analysis and fracturing design optimization of fractured horizontal well in tight gas reservoirs[J]. Xinjiang Petroleum Geology, 2018,39(6):727-731 . | |
[3] | GRIESER B, BRAY J. Identification of production potential in unconventional reservoirs[R]. SPE 106623, 2007. |
[4] |
LAI Jin, WANG Guiwen, HUANG Longxing, et al. Brittleness index estimation in a tight shaly sandstone reservoir using well logs[J]. Journal of Natural Gas Science and Engineering, 2015,27:1 536-1 545.
doi: 10.1016/j.jngse.2015.10.020 |
[5] |
SARRIS E, PAPANASTASIOU P. Numerical modeling of fluid-driven fractures in cohesive poroelastoplastic continuum[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2013,37(12):1 822-1 846.
doi: 10.1002/nag.v37.12 |
[6] |
赵向原, 曾联波, 祖克威, 等. 致密储层脆性特征及对天然裂缝的控制作用:以鄂尔多斯盆地陇东地区长7致密储层为例[J]. 石油与天然气地质, 2016,37(1):62-71.
doi: 10.11743/ogg20160109 |
ZHAO Xiangyuan, ZENG Lianbo, ZU Kewei, et al. Brittleness characteristics and its control on natural fractures in tight reservoirs:a case study from Chang 7 tight reservoir in Longdong area of the Ordos basin[J]. Oil & Gas Geology, 2016,37(1):62-71. | |
[7] |
WANG Hanyi. Numerical investigation of fracture spacing and sequencing effects on multiple hydraulic fracture interference and coalescence in brittle and ductile reservoir rocks[J]. Engineering Fracture Mechanics, 2016,157:107-124.
doi: 10.1016/j.engfracmech.2016.02.025 |
[8] |
RYBACKI E, MEIER T, DRESEN G. What controls the mechanical properties of shale rocks? Part Ⅱ:brittleness[J]. Journal of Petroleum Science and Engineering, 2016,144:39-58.
doi: 10.1016/j.petrol.2016.02.022 |
[9] | 延新杰, 李连崇, 张潦源, 等. 岩石脆性对水力压裂裂缝影响的数值模拟实验[J]. 油气地质与采收率, 2017,24(3):116-121. |
YAN Xinjie, LI Lianchong, ZHANG Liaoyuan, et al. Numerical simulation experiment of the effect of rock brittleness on fracture propagation of hydraulic fracturing[J]. Petroleum Geology and Recovery Efficiency, 2017,24(3):116-121. | |
[10] |
SHIMIZU H, ITO T, TAMAGAWA T, et al. A study of the effect of brittleness on hydraulic fracture complexity using a flow-coupled discrete element method[J]. Journal of Petroleum Science and Engineering, 2018,160:372-383.
doi: 10.1016/j.petrol.2017.10.064 |
[11] | WEIJERS L, PATER C J D, OWENS K A, et al. Geometry of hydraulic fractures induced from horizontal wellbores[J]. SPE Production & Facilities, 1994,9(2):87-92. |
[12] | AHMED M G, QI Q, RUSSELL M, et al. New insights into hydraulic fracturing of shale formations[R]. IPTC 17594, 2014. |
[13] | 张士诚, 郭天魁, 周彤, 等. 天然页岩压裂裂缝扩展机理试验[J]. 石油学报, 2014,35(3):496-503. |
ZHANG Shicheng, GUO Tiankui, ZHOU Tong, et al. Fracture propagation mechanism experiment of hydraulic fracturing in natural shale[J]. Acta Petrolei Sinica, 2014,35(3):496-503. | |
[14] |
GUO Tiankui, ZHANG Shicheng, QU Zhanqing, et al. Experimental study of hydraulic fracturing for shale by stimulated reservoir volume[J]. Fuel, 2014,128:373-380.
doi: 10.1016/j.fuel.2014.03.029 |
[15] |
TAN Peng, JIN Yan, HAN Ke, et al. Analysis of hydraulic fracture initiation and vertical propagation behavior in laminated shale formation[J]. Fuel, 2017,206:482-493.
doi: 10.1016/j.fuel.2017.05.033 |
[16] | 范铁刚, 张广清. 注液速率及压裂液黏度对煤层水力裂缝形态的影响[J]. 中国石油大学学报(自然科学版), 2014,38(4):117-123. |
FAN Tiegang, ZHANG Guangqing. Influence of injection rate and fracturing fluid viscosity on hydraulic fracture geometry in coal[J]. Journal of China University of Petroleum(Edition of Natural Science), 2014,38(4):117-123. | |
[17] | WARPINSKI N R, KRAMM R C, HEINZE J R, et al. Comparison of single-and dual-array microseismic mapping techniques in the Barnett shale[R]. SPE 95568-MS, 2005. |
[18] | PALISCH T T, VINCENT M C, HANDREN P J. Slickwater fracturing:food for thought[R]. SPE 115766, 2008. |
[19] | 魏元龙, 杨春和, 郭印同, 等. 须家河组致密砂岩水力压裂裂缝形态的试验研究[J]. 岩石力学与工程学报, 2016,35(增刊1):2 720-2 731. |
WEI Yuanlong, YANG Chunhe, GUO Yintong, et al. Experimental study on hydraulic fracture geometry of tight sandstone from Xujiahe group[J]. Chinese Journal of Rock Mechanics and Engineering, 2016,35(Supp.1):2 720-2 731. | |
[20] | ISHIDA T, AOYAGI K, NIWA T, et al. Acoustic emission monitoring of hydraulic fracturing laboratory experiment with supercritical and liquid CO2[J]. Geophysical Research Letters, 2012,39:L16309. |
[21] | KIZAKIA A, TANAKA H, OHASHI K, et al. Hydraulic fracturing in Inada granite and Ogino tuff with super critical carbon dioxide[R]. ISRM-ARMS7-2012-109, 2012. |
[22] |
BENNOUR Z, ISHIDA T, NAGAYA Y, et al. Crack extension in hydraulic fracturing of shale cores using viscous oil,water,and liquid carbon dioxide[J]. Rock Mechanics and Rock Engineering, 2015,48(4):1 463-1 473.
doi: 10.1007/s00603-015-0774-2 |
[23] |
ZHANG Xinwei, LU Yiyu, TANG Jiren, et al. Experimental study on fracture initiation and propagation in shale using supercritical carbon dioxide fracturing[J]. Fuel, 2017,190:370-378.
doi: 10.1016/j.fuel.2016.10.120 |
[24] |
ZOU Yushi, LI Ning, MA Xinfang, et al. Experimental study on the growth behavior of supercritical CO2-induced fractures in a layered tight sandstone formation[J]. Journal of Natural Gas Science and Engineering, 2018,49:145-156.
doi: 10.1016/j.jngse.2017.11.005 |
[25] |
LI Sihai, ZHANG Shicheng, MA Xinfang, et al. Hydraulic fractures induced by water-/carbon dioxide-based fluids in tight sandstones[J]. Rock Mechanics and Rock Engineering, 2019,52:3 323-3 340.
doi: 10.1007/s00603-019-01777-w |
[26] | 叶亮, 邹雨时, 赵倩云, 等. 致密砂岩储层CO2压裂裂缝扩展实验研究[J]. 石油钻采工艺, 2018,40(3):361-368. |
YE Liang, ZOU Yushi, ZHAO Qianyun, et al. Experiment research on the CO2 fracturing fracture propagation laws of tight sandstone[J]. Oil Drilling & Production Technology, 2018,40(3):361-368. | |
[27] |
ZHANG Decheng, RANJITH P G, PERERA M S A. The brittleness indices used in rock mechanics and their application in shale hydraulic fracturing:a review[J]. Journal of Petroleum Science and Engineering, 2016,143:158-170.
doi: 10.1016/j.petrol.2016.02.011 |
[28] |
MAO Bai. Why are brittleness and fracability not equivalent in designing hydraulic fracturing in tight shale gas reservoirs[J]. Petroleum, 2016,2(1):1-19.
doi: 10.1016/j.petlm.2016.01.001 |
[29] | 石道涵, 张兵, 何举涛, 等. 鄂尔多斯长7致密砂岩储层体积压裂可行性评价[J]. 西安石油大学学报(自然科学版), 2014,29(1):52-55. |
SHI Daohan, ZHANG Bing, HE Jutao, et al. Feasibility evaluation of volume fracturing of Chang-7 tight sandstone reservoir in Ordos basin[J]. Journal of Xi’an Shiyou University(Natural Science Edition), 2014,29(1):52-55. | |
[30] | 马旭, 郝瑞芬, 来轩昂, 等. 苏里格气田致密砂岩气藏水平井体积压裂矿场试验[J]. 石油勘探与开发, 2014,41(5):742-747. |
MA Xu, HAO Ruifen, LAI Xuan’ang, et al. Field test of volume fracturing for horizontal wells in Sulige tight sandstone gas reservoirs[J]. Petroleum Exploration and Development, 2014,41(5):742-747. | |
[31] | 刘恩龙, 沈珠江. 岩土材料的脆性研究[J]. 岩石力学与工程学报, 2005,24(19):51-55. |
LIU Enlong, SHEN Zhujiang. Study on brittleness of geomaterials[J]. Chinese Journal of Rock Mechanics and Engineering, 2005,24(19):51-55. | |
[32] |
HUCKA V, DAS B. Brittleness determination of rocks by different methods[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1974,11(10):389-392.
doi: 10.1016/0148-9062(74)91109-7 |
[33] |
WANNIARACHCHI W A M, RANJITH P G, PERERA M S A, et al. Current opinions on foam-based hydro-fracturing in deep geological reservoirs[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2015,1:121-134.
doi: 10.1007/s40948-015-0015-x |
[1] | YU Peirong, ZHENG Guoqing, SUN Futai, WANG Zhenlin. Simulation on Fracture Propagation During Hydraulic Fracturing in Horizontal Wells in Shale Reservoirs of Fengcheng Formation,Mahu Sag [J]. Xinjiang Petroleum Geology, 2022, 43(6): 750-756. |
[2] | YU Jianglong, CHEN Gang, WU Junjun, LI Wei, YANG Sen, TANG Tingming. Seismic Prediction Method of Geological and Engineering Shale Oil Sweet Spots and Its Application in Fengcheng Formation of Mahu Sag [J]. Xinjiang Petroleum Geology, 2022, 43(6): 757-766. |
[3] | CHEN Xuan, WANG Jufeng, XIAO Dongsheng, LIU Juntian, GOU Hongguang, ZHANG Hua, LIN Lin, LI Hongwei. Accumulation Conditions and Exploration Direction of Lower Jurassic Tight Sandstone Gas Reservoirs in Taibei Sag [J]. Xinjiang Petroleum Geology, 2022, 43(5): 505-512. |
[4] | SONG Yuchun, HUANG Hao, ZHOU Chuangfei, KE Xianqi, TANG Haodi, ZHU Yushuang. Evaluation on Sensitivity Difference Between Chang 4+5 and Chang 6 Reservoirs in Mahuangshan Area of Jiyuan Oilfield [J]. Xinjiang Petroleum Geology, 2022, 43(5): 546-553. |
[5] | CHENG Zhenghua, AI Chi, ZHANG Jun, YAN Maosen, TAO Feiyu, BAI Mingtao. Influences of Cemented Natural Fractures on Propagation of Hydraulic Fractures [J]. Xinjiang Petroleum Geology, 2022, 43(4): 433-439. |
[6] | LUO Anxiang, YU Jian, LIU Xianyang, JIAO Chuangyun, HAN Tianyou, CHU Meijuan. Practices and Cognitions of Petroleum Exploration in Mesozoic,Ordos Basin [J]. Xinjiang Petroleum Geology, 2022, 43(3): 253-260. |
[7] | LIU Die, ZHANG Haitao, YANG Xiaoming, ZHAO Taiping, KOU Xiaopan, ZHU Baoding. Well Logging Evaluation of Bauxite Reservoirs in Ordos Basin [J]. Xinjiang Petroleum Geology, 2022, 43(3): 261-270. |
[8] | BAI Hui, YANG Tebo, HOU Kefeng, MA Zhixin, FENG Min. Main Controlling Factors and Gas Enrichment Area Selection of Ma55 Gas Reservoir in Eastern Sulige Gas Field [J]. Xinjiang Petroleum Geology, 2022, 43(3): 271-277. |
[9] | LUO Lirong, LI Jianfeng, YANG Weiwei, MA Jun, LI Huan, WU Kai. Characteristics and Hydrocarbon Generation Potential of Chang 9 Source Rocks on Yishaan Slope, Ordos Basin [J]. Xinjiang Petroleum Geology, 2022, 43(3): 278-284. |
[10] | DUAN Zhiqiang, XIA Hui, WANG Long, GAO Wei, FAN Qianqian, SHI Wei. Reservoir Characteristics and Controlling Factors of Shan 1 Member in Qingyang Gas Field, Ordos Basin [J]. Xinjiang Petroleum Geology, 2022, 43(3): 285-293. |
[11] | WU Zemin, KE Xianqi, ZHANG Pan, WEN Fengqin, TONG Qiang, LIU Linyu. Sand Body Architecture of Chang 9 Member in Jiyuan Area,Ordos Basin [J]. Xinjiang Petroleum Geology, 2022, 43(3): 294-309. |
[12] | REN Yilin, ZHAO Junfeng, CHEN Jiayu, GUAN Xin, SONG Jinggan. Sedimentary Characteristics and Sand Body Architecture of Shallow Delta Front in Ordos Basin: A Case Study of Chang 9 Member in Shiwanghe Section in Yichuan [J]. Xinjiang Petroleum Geology, 2022, 43(3): 310-319. |
[13] | WAN Xiaolong, ZHANG Yuanli, FAN Jianming, LI Zhen, ZHANG Chao. Production System of Horizontal Well in Shale Oil Reservoirs of Chang 7 Member, Ordos Basin [J]. Xinjiang Petroleum Geology, 2022, 43(3): 329-334. |
[14] | XIAO Feng, YUE Jun, LI Zhichao, LIU Lili, ZHANG Ji, FAN Jiwu, ZHANG Tao. Upper Limit of Water Saturation for Profitable Development of Tight Sandstone Gas Reservoirs in Sulige Gas Field [J]. Xinjiang Petroleum Geology, 2022, 43(3): 335-340. |
[15] | FAN Jiwu, XU Zhenping, LIU Lili, ZHANG Juan. Production Profile of Horizontal Wells in Strongly Heterogeneous Tight Gas Reservoirs in Sulige Gas Field [J]. Xinjiang Petroleum Geology, 2022, 43(3): 341-345. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||