Xinjiang Petroleum Geology ›› 2025, Vol. 46 ›› Issue (1): 71-77.doi: 10.7657/XJPG20250109
• RESERVOIR ENGINEERING • Previous Articles Next Articles
LIU Liwei1,2(), ZHOU Hui3, YAN Bingxu1,2, JIAO Yuwei3, QU Yuanji1,2, JIN Jiangning1,2, PAN Yangyong1,2
Received:
2024-09-12
Revised:
2024-09-24
Online:
2025-02-01
Published:
2025-01-24
CLC Number:
LIU Liwei, ZHOU Hui, YAN Bingxu, JIAO Yuwei, QU Yuanji, JIN Jiangning, PAN Yangyong. Water Invasion Characteristics and Stable Production Strategies in Kelasu Ultra-Deep Gas Field, Kuqa Depression[J]. Xinjiang Petroleum Geology, 2025, 46(1): 71-77.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1.
Water invasion characteristics of the Kelasu ultra-deep gas field and their impacts on gas reservoir development"
水侵类型 | 渗流介质分布规律 | 气井生产动态特征 | 对气藏开发影响 | 典型井 |
---|---|---|---|---|
断层沟通边底水 | 南翼断层较发育,北翼断层相对不发育,核部介于两者之间,二级断层主要分布于南翼 | 测试气水同出,氯离子含量较高,投产后氯离子含量保持稳定 | 沿垂向、走向沟通边底水,对垂直于走向方向影响小,局部气水同出,局部影响气藏水侵 | KeS904井、 DB2井 |
沿裂缝非均匀水侵 | 裂缝整体分区、局部分带,方向性明显,分布规则 | 投产早期不出水,出水后油压下降,产气量减少,产水量升高,氯离子含量上升 | 裂缝指向强能量水体,非均匀水侵严重,例如,克深段气藏;裂缝指向南、北翼弱能量水体,非均匀水侵影响小,裂缝主要表现为提高单井产能,例如,博孜—大北段气藏;裂缝对气田水侵的影响具有分区性,对气藏水侵具全局性影响 | KeS2-1-6井 |
局部排替不完全形成封存水 | 气田南部因构造形成时间晚,裂缝发育程度较低,局部地层水排替不完全 | 测试气水同出,氯离子含量介于地层水和凝析水之间,投产后氯离子含量有下降趋势 | 局部气水同出,局部影响气藏水侵 | KeS13井 |
[1] | 周学文, 林会喜, 郭景祥, 等. 塔里木盆地库车坳陷南斜坡新和地区白垩系亚格列木组沉积模式及油气意义[J]. 石油实验地质, 2023, 45(2):266-279. |
ZHOU Xuewen, LIN Huixi, GUO Jingxiang, et al. Depositional model and petroleum significance of the Cretaceous Yageliemu formation in Xinhe area on the southern slope of Kuqa depression,Tarim Basin[J]. Petroleum Geology & Experiment, 2023, 45(2):266-279. | |
[2] | 江同文, 汪如军, 肖香姣, 等. 2022塔里木盆地克拉苏超深气田超深超高压气藏开发实践[M]. 北京: 石油工业出版社, 2022. |
JIANG Tongwen, WANG Rujun, XIAO Xiangjiao, et al. 2022 Development practice of the ultra-deep and ultra-high pressure gas reservoirs in Kelasu gas field, Tarim Basin[M]. Beijing: Petroleum Industry Press,2022. | |
[3] | 江同文, 孙雄伟. 库车前陆盆地克深气田超深超高压气藏开发认识与技术对策[J]. 天然气工业, 2018, 38(6):1-7. |
JIANG Tongwen, SUN Xiongwei. Development of Keshen ultra-deep and ultra-high pressure gas reservoirs in the Kuqa foreland basin,Tarim Basin:Understanding points and technical countermeasures[J]. Natural Gas Industry, 2018, 38(6):1-7. | |
[4] | 江同文, 孙雄伟. 中国深层天然气开发现状及技术发展趋势[J]. 石油钻采工艺, 2020, 42(5):610-617. |
JIANG Tongwen, SUN Xiongwei. Development status and technology development trend of deep natural gas in China[J]. Oil Drilling & Production Technology, 2020, 42(5):610-617. | |
[5] | 李国欣, 田军, 段晓文, 等. 大幅提高超深致密砂岩气藏采收率对策与实践:以塔里木盆地克拉苏超深气田为例[J]. 天然气工业, 2022, 42(1):93-101. |
LI Guoxin, TIAN Jun, DUAN Xiaowen, et al. Measures and practice for improving the recovery factor of ultradeep tight sandstone gas reservoirs:A case study of Kelasu gas field,Tarim Basin[J]. Natural Gas Industry, 2022, 42(1):93-101. | |
[6] | 贾爱林. 中国天然气开发技术进展及展望[J]. 天然气工业, 2018, 38(4):77-85. |
JIA Ailin. Progress and prospects of natural gas development technologies in China[J]. Natural Gas Industry, 2018, 38(4):77-85. | |
[7] | 王振彪, 孙雄伟, 肖香姣. 超深超高压裂缝性致密砂岩气藏高效开发技术:以塔里木盆地克拉苏超深气田为例[J]. 天然气工业, 2018, 38(4):87-95. |
WANG Zhenbiao, SUN Xiongwei, XIAO Xiangjiao. Efficient development technologies for ultradeep,overpressured and fractured sandstone gas reservoirs:A cased study of the Kelasu gas field in the Tarim Basin[J]. Natural Gas Industry, 2018, 38(4):87-95. | |
[8] |
胡勇, 李熙喆, 万玉金, 等. 裂缝气藏水侵机理及对开发影响实验研究[J]. 天然气地球科学, 2016, 27(5):910-917.
doi: 10.11764/j.issn.1672-1926.2016.05.0910 |
HU Yong, LI Xizhe, WAN Yujin, et al. The experimental study of water invasion mechanism in fracture and the influence on the development of gas reservoir[J]. Natural Gas Geoscience, 2016, 27(5):910-917.
doi: 10.11764/j.issn.1672-1926.2016.05.0910 |
|
[9] | 孙贺东, 欧阳伟平, 朱松柏, 等. 多尺度离散裂缝性致密砂岩气藏数值试井新方法:以塔里木盆地克拉苏超深气田为例[J]. 天然气工业, 2022, 42(7):55-64. |
SUN Hedong, OUYANG Weiping, ZHU Songbai, et al. A new numerical well test method of multi-scale discrete fractured tight sandstone gas reservoirs and its application in the Kelasu gas field of the Tarim Basin[J]. Natural Gas Industry, 2022, 42(7):55-64. | |
[10] | 刘立炜, 周慧, 张承泽, 等. 库车坳陷克拉苏构造带协同变形机制及盆山耦合关系[J]. 地质科学, 2022, 57(1):61-72. |
LIU Liwei, ZHOU Hui, ZHANG Chengze, et al. Synergistic deformation mechanisms and basin-mountain coupling of Kelasa structural belt in Kuqa depression[J]. Chinese Journal of Geology, 2022, 57(1):61-72. | |
[11] | 罗丹婷, 罗静兰, 邓超, 等. 库车坳陷深层盐下白垩系储集层氯盐分布模式及意义[J]. 新疆石油地质, 2024, 45(1):1-12. |
LUO Danting, LUO Jinglan, DENG Chao, et al. Distribution patterns and significance of salt in deep Cretaceous subsalt reservoirs in Kuqa depression,Tarim Basin[J]. Xinjiang Petroleum Geology, 2024, 45(1):1-12. | |
[12] | 石耀东, 王丽琼, 藏苡澄, 等. 苏里格气田致密砂岩气藏剩余气分布特征及其挖潜[J]. 新疆石油地质, 2023, 44(5):554-561. |
SHI Yaodong, WANG Liqiong, ZANG Yicheng, et al. Distribution and potential tapping strategies of remaining gas in tight sandstone gas reservoirs[J]. Xinjiang Petroleum Geology, 2023, 44(5):554-561. | |
[13] |
谢增业, 杨春龙, 李剑, 等. 四川盆地致密砂岩天然气成藏特征及规模富集机制:以川中地区上三叠统须家河组气藏为例[J]. 天然气地球科学, 2021, 32(8):1201-1211.
doi: 10.11764/j.issn.1672-1926.2021.02.002 |
XIE Zengye, YANG Chunlong, LI Jian, et al. Accumulation characteristics and large-medium gas reservoir-forming mechanism of tight sandstone gas reservoir in Sichuan Basin:Case study on the Upper Triassic Xujiahe formation gas reservoir in central Sichuan Basin[J]. Natural Gas Geoscience, 2021, 32(8):1201-1211.
doi: 10.11764/j.issn.1672-1926.2021.02.002 |
|
[14] | ZHANG Ronghu, WANG Ke, ZENG Qinglu, et al. Effectiveness and petroleum geological significance of tectonic fractures in the ultra-deep zone of the Kuqa foreland thrust belt:A case study of the Cretaceous Bashijiqike formation in the Keshen gas field[J]. Petroleum Science, 2021,18:728-741. |
[15] | 王珂, 杨海军, 张惠良, 等. 超深层致密砂岩储层构造裂缝特征与有效性:以塔里木盆地库车坳陷克深8气藏为例[J]. 石油与天然气地质, 2018, 39(4):715-742. |
WANG Ke, YANG Haijun, ZHANG Huiliang, et al. Characteristics and effectiveness of structural fractures in ultra-deep tight sandstone reservoir:A case study of Keshen-8 gas pool in Kuqa depression,Tarim Basin[J]. Oil & Gas Geology, 2018, 39(4):715-742. | |
[16] |
王珂, 张惠良, 张荣虎, 等. 超深层致密砂岩储层构造裂缝特征及影响:以塔里木盆地克深2气田为例[J]. 石油学报, 2016, 37(6):715-742.
doi: 10.7623/syxb201606003 |
WANG Ke, ZHANG Huiliang, ZHANG Ronghu, et al. Characteristics and influencing factors of ultra-deep tight sandstone reservoir structural fracture:A case study of Keshen-2 gas field,Tarim Basin[J]. Acta Petrolei Sinica, 2016, 37(6):715-742. | |
[17] | 杨帆, 梅文博, 李亮, 等. 薄互层致密砂岩水力压裂裂缝扩展特征研究[J]. 煤田地质与勘探, 2023, 51(7):61-71. |
YANG Fan, MEI Wenbo, LI Liang, et al. Propagation of hydraulic fractures in thin interbedded tight sandstones[J]. Coal Geology & Exploration, 2023, 51(7):61-71. | |
[18] | 李映涛, 汝智星, 邓尚, 等. 塔里木盆地顺北特深碳酸盐岩储层天然裂缝实验评价及油气意义[J]. 石油实验地质, 2023, 45(3):422-433. |
LI Yingtao, RU Zhixing, DENG Shang, et al. Experimental evaluation and hydrocarbon significance of natural fractures in Shunbei ultra-deep carbonate reservoir,Tarim Basin[J]. Petroleum Geology & Experiment, 2023, 45(3):422-433. | |
[19] | 李睿琦, 吕文雅, 王浩南, 等. 塔里木盆地库车坳陷克拉苏构造带克深地区典型断背斜天然裂缝分布特征[J]. 天然气地球科学, 2023, 36(2):201-208. |
LI Ruiqi, LV Wenya, WANG Haonan, et al. Distribution characteristics of natural fractures of the typical fault anticlines in Keshen area of Kelasu structural belt,Kuqa depression,Tarim Basin[J]. Natural Gas Geoscience, 2023, 36(2):201-208. | |
[20] | 丁文龙, 尹帅, 王兴华, 等. 致密砂岩气储层裂缝评价方法与表征[J]. 地学前缘(中国地质大学(北京);北京大学), 2015, 22(4):173-187. |
DING Wenlong, YIN Shuai, WANG Xinghua, et al. Assessment method and characterization of tight sandstone gas reservoir fractures[J]. Earth Science Frontiers(China University of Geosciences (Beijing);Peking University), 2015, 22(4):173-187. | |
[21] |
吕志凯, 唐海发, 刘群明, 等. 塔里木盆地库车坳陷超深层裂缝性致密气藏水封气动态评价方法[J]. 天然气地球科学, 2022, 33(11):1874-1880.
doi: 10.11764/j.issn.1672-1926.2022.07.007 |
LV Zhikai, TANG Haifa, LIU Qunming, et al. Dynamic evaluation method of water sealed gas for ultra-deep fractured tight gas reservoir in Kuqa depression,Tarim Basin[J]. Natural Gas Geoscience, 2022, 33(11):1874-1880.
doi: 10.11764/j.issn.1672-1926.2022.07.007 |
|
[22] |
贾爱林, 唐海发, 韩永新, 等. 塔里木盆地库车坳陷深层大气田气水分布与开发对策[J]. 天然气地球科学, 2019, 30(6):908-916.
doi: 10.11764/j.issn.1672-1926.2019.05.014 |
JIA Ailin, TANG Haifa, HAN Yongxin, et al. The distribution of gas and water and development strategy for deep-buried gasfield in Kuqa depression,Tarim Basin[J]. Natural Gas Geoscience, 2019, 30(6):908-916.
doi: 10.11764/j.issn.1672-1926.2019.05.014 |
[1] | HUANG Chao, GUO Honghui, ZHANG Shenglong, ZHU Lintao, FENG Jianwei, DU He. In-situ Stress Characteristics and Fracture Distribution Prediction of Different Segments in Shunbei No.4 Strike-Slip Fault Zone, Tarim Basin [J]. Xinjiang Petroleum Geology, 2025, 46(1): 1-12. |
[2] | TAN Zhongjian, GUO Kangliang, WU Liwei, ZHANG Guoqiang, LI Hongru, DENG Jinhui, BI Hongri. Identification and Productivity Prediction of High-Quality Reservoirs in the Metamorphic Buried Hills of the Bozhong 19-6 Structure [J]. Xinjiang Petroleum Geology, 2025, 46(1): 57-63. |
[3] | WANG Yingying, GUI Lili, LU Xuesong, LIU Huichuan, MO Tao, ZHOU Hui, JIANG Lin. Structural Deformation and Hydrocarbon Accumulation Characteristics of Baxigai Formation in Awat Area, Kuqa Depression [J]. Xinjiang Petroleum Geology, 2024, 45(6): 631-641. |
[4] | YANG Yufang, XIAO Qiang, SU Rongkun, LIU Hongping, ZHANG Li, MENG Luying. Sedimentary Facies of Yangxia Formation Around Yakela Fault-Bulge in Tarim Basin [J]. Xinjiang Petroleum Geology, 2024, 45(6): 650-658. |
[5] | LI Yunpeng, LIN Xuechun, YU Xingchen, KANG Zhihong, LI Peijing, WANG Yajing, QI Aiping. Identification and Modeling of Micro-Minor Fractures in Thin Biolimestones in Wangxuzhuang Oilfield [J]. Xinjiang Petroleum Geology, 2024, 45(6): 671-679. |
[6] | LI Jikang, ZENG Qingyong, GUO Chen, LI Qing, ZHU Lele. Multi-Scale and Multi-Constraint Geological Modeling of Fault-Controlled Karst Reservoirs [J]. Xinjiang Petroleum Geology, 2024, 45(6): 719-724. |
[7] | DING Sheng, LIU Jinhua, SHANG Yamin, PENG Pai, FU Jinxiang. Fracture Characteristics and Seismic Prediction of Z4 Metamorphic Buried-Hill Reservoir [J]. Xinjiang Petroleum Geology, 2024, 45(5): 516-521. |
[8] | WANG Qinghua, CAI Zhenzhong, ZHANG Yintao, WU Guanghui, XIE Zhou, WAN Xiaoguo, TANG Hao. Research Progress and Trend of Ultra-Deep Strike-Slip Fault-Controlled Hydrocarbon Reservoirs in Tarim Basin [J]. Xinjiang Petroleum Geology, 2024, 45(4): 379-386. |
[9] | YANG Haijun, NENG Yuan, SHAO Longfei, XIE Zhou, KANG Pengfei, YUAN Jingyi, FU Yonghong. Multilayer Superimposition Patterns of Strike-Slip Fault Zones and Their Petroleum Geological Significance in Platform Area, Tarim Basin [J]. Xinjiang Petroleum Geology, 2024, 45(4): 387-400. |
[10] | CAI Zhenzhong, LI Bing, LUO Xiao, LI Huiyuan, LI Mengqin, LI Zhengyang, WANG Qinghong. Ordovician Differential Deformation Mechanism of Northern Section of FⅠ17 Strike-Slip Fault, Tarim Basin [J]. Xinjiang Petroleum Geology, 2024, 45(4): 401-408. |
[11] | BAI Bingchen, WU Guanghui, MA Bingshan, ZHAO Xingxing, TANG Hao, SHEN Chunguang, WANG Xupeng. Segmented Structural Characteristics and Growth Mechanism of Transtensional Strike-Slip Fault Zone in Tazhong Uplift [J]. Xinjiang Petroleum Geology, 2024, 45(4): 409-416. |
[12] | XIONG Chang, SHEN Chunguang, ZHAO Xingxing, ZHAO Longfei, LI Shengqian, ZHOU Jie, PAN Tiancou. Segmentation of Strike-Slip Faults and Its Controls on Hydrocarbon Accumulation in Tarim Basin: A Case Study of FⅠ17 Strike-Slip Fault Zone [J]. Xinjiang Petroleum Geology, 2024, 45(4): 417-424. |
[13] | ZHU Yongfeng, ZHANG Yanqiu, YANG Xinying, YANG Guang, PENG Debing, HAN Yu, WANG Zhenyu. Types and Distribution of Grain Shoals in Yijianfang Formation of Fuman Area, Tarim Basin [J]. Xinjiang Petroleum Geology, 2024, 45(4): 432-441. |
[14] | LIU Qiang, LI Jing, LI Ting, ZHENG Mingjun, XU Mengjia, WANG Xuan, WU Mingyang. Oil-Water Two-Phase Flow Behaviors in Fracture-Cavity Carbonate Reservoirs With Fluid-Solid Coupling [J]. Xinjiang Petroleum Geology, 2024, 45(4): 451-459. |
[15] | ZHANG Rujie, CHEN Lixin, YUE Ping, XIAO Yun, WANG Xia, LYU Yuan, YANG Wenming. Dynamic Model and Sensitivity Analysis of High-Pressure Water Injection for Capacity Expansion of Fractured-Vuggy Reservoirs [J]. Xinjiang Petroleum Geology, 2024, 45(4): 460-469. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||