Xinjiang Petroleum Geology ›› 2025, Vol. 46 ›› Issue (4): 438-447.doi: 10.7657/XJPG20250406
• RESERVOIR ENGINEERING • Previous Articles Next Articles
LUO Rong1(), CHEN Shuyang1, HE Yunfeng1(
), WANG Zhou1, LI Wenliang1, LIU Gangbo1, WANG Xiao2
Received:
2025-02-17
Revised:
2025-03-04
Online:
2025-08-01
Published:
2025-07-25
Contact:
HE Yunfeng
E-mail:luorong.xbsj@sinopec.com;heyunfeng2316697@163.com
CLC Number:
LUO Rong, CHEN Shuyang, HE Yunfeng, WANG Zhou, LI Wenliang, LIU Gangbo, WANG Xiao. Inter-Well Connectivity and Controlling Factors of Ultra-Deep Fault-Controlled Fractured-Vuggy Reservoirs in the Shunbei No.1 Fault Zone, Traim Basin[J]. Xinjiang Petroleum Geology, 2025, 46(4): 438-447.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1.
Division of statically connected units in Shunbei No.1 fault zone"
静态连通 单元 | 井名 | 脱气前单位 压降产液量/ (t·MPa-1) | 储集体类型 | 静态连通 单元 | 井名 | 脱气前单位 压降产液量/ (t·MPa-1) | 储集体类型 |
---|---|---|---|---|---|---|---|
SH-BP3H | SHB1-9井 | 洞穴型 | SHB1-1H | SHB1-20H井 | 1 330 | 洞穴型 | |
SHB1-17CH井 | 568 | 裂缝-孔洞型 | SHB1-1H井 | 2 335 | 洞穴型 | ||
SH-BP3H井 | 925 | 洞穴型 | SHB1-4HCH井 | 1 393 | 洞穴型 | ||
SHB1-8H井 | 776 | 裂缝-孔洞型 | SHB1-5H井 | 2 424 | 洞穴型 | ||
SHB1-6H | SHB1-3井 | 17 674 | 洞穴型 | SHB1-2H井 | 2 413 | 洞穴型 | |
SHB1CX井 | 6 044 | 裂缝型 | SHB1-13CH井 | 681 | 裂缝-孔洞型 | ||
SHB1-19H井 | 956 | 裂缝-孔洞型 | SHB1-24X井 | 2 261 | 洞穴型 | ||
SHB1-10H井 | 1 391 | 洞穴型 | SHB1-11井 | 1 226 | 洞穴型 | ||
SHB1-18H井 | 666 | 裂缝型 | SHB1-12H | SHB1-14井 | 1 038 | 洞穴型 | |
SHB1-6H井 | 1 402 | 洞穴型 | SHB1-12井 | 879 | 裂缝-孔洞型 | ||
SHB1-22H井 | 2 222 | 裂缝型 | SHB1-15井 | 2 375 | 洞穴型 | ||
SHB1-1H | SHB1-7H井 | 3 191 | 洞穴型 | SHB1-16H井 | 生产波动大 | 裂缝-孔洞型 |
Table 3.
Euclidean distance of the flow pressure curves before and after acid fracturing in Stage I and Stage II of the statically connected unit of Well SHB1-1H"
阶段 | 井名 | 归一化欧氏距离 | ||||
---|---|---|---|---|---|---|
SHB1-1H井 | SHB1-2H井 | SHB1-20H井 | SHB1-5H井 | SHB1-7H井 | ||
SHB1-1H静态连通单元阶段一 | SHB1-1H井 | 0 | 0.062 | 0.072 | 0.056 | 0.034 |
SHB1-2H井 | 0.062 | 0 | 0.031 | 0.019 | 0.035 | |
SHB1-20H井 | 0.072 | 0.031 | 0 | 0.033 | 0.044 | |
SHB1-5H井 | 0.056 | 0.019 | 0.033 | 0 | 0.031 | |
SHB1-7H井 | 0.034 | 0.035 | 0.044 | 0.031 | 0 | |
SHB1-1H静态连通单元阶段二酸化压裂前 | SHB1-1H井 | 0 | 0.016 | 0.031 | 0.062 | 0.012 |
SHB1-2H井 | 0.016 | 0 | 0.018 | 0.049 | 0.017 | |
SHB1-20H井 | 0.031 | 0.018 | 0 | 0.037 | 0.031 | |
SHB1-5H井 | 0.062 | 0.049 | 0.037 | 0 | 0.060 | |
SHB1-7H井 | 0.012 | 0.017 | 0.031 | 0.060 | 0 | |
SHB1-1H静态连通单元阶段二酸化压裂后 | SHB1-1H井 | 0 | 0.068 | 0.039 | 0.089 | 0.035 |
SHB1-2H井 | 0.068 | 0 | 0.104 | 0.030 | 0.066 | |
SHB1-20H井 | 0.039 | 0.104 | 0 | 0.122 | 0.055 | |
SHB1-5H井 | 0.089 | 0.030 | 0.122 | 0 | 0.089 | |
SHB1-7H井 | 0.035 | 0.066 | 0.055 | 0.089 | 0 |
Table 4.
Qualitative judgment results of inter-well connectivity from the unit pressure analysis for statically connected unit of Well SHB1-1H and division of dynamically connected well groups"
井名 | 类干扰响应 | 试井响应 | 生产曲线相似性 | 是否连通 | 动态连通井组划分 |
---|---|---|---|---|---|
SHB1-1H井与SHB1-7H井 | 具有 | 具有 | 相似 | 连通 | 井组1:SHB1-1H井、SHB1-7H井、SHB1-20H井 |
SHB1-1H井与SHB1-20H井 | 具有 | 相似 | 连通 | ||
SHB1-7H井与SHB1-20H井 | 具有 | 具有 | 连通 | ||
SHB1-4HCH井与SHB1-2H井 | 具有 | 相似 | 连通 | 井组2:SHB1-4HCH井、SHB1-5H井、SHB1-2H井、SHB1-13CH井 | |
SHB1-4HCH井与SHB1-5H井 | 具有 | 具有 | 相似 | 连通 | |
SHB1-5H井与SHB1-2H井 | 具有 | 相似 | 连通 | ||
SHB1-5H井与SHB1-13CH井 | 具有 | 相似 | 连通 | ||
SHB1-2H井与SHB1-4HCH井 | 具有 | 相似 | 连通 | ||
SHB1-24X井 | 单井单元 | 单井单元1:SHB1-11井 | |||
SHB1-11井 | 单井单元 | 单井单元2:SHB1-24X井 |
Table 5.
Euclidean distance to other wells before and after acid fracturing in Wells SHB1-5H and SHB1-7H"
井名 | 阶段 | 归一化欧氏距离 | ||||
---|---|---|---|---|---|---|
SHB1-1H井 | SHB1-2H井 | SHB1-20H井 | SHB1-5H井 | SHB1-7H井 | ||
SHB1-5H井 | 酸化压裂前 | 0.062 | 0.049 | 0.037 | 0 | 0.060 |
酸化压裂后 | 0.089 | 0.030 | 0.122 | 0 | 0.089 | |
SHB1-7H井 | 酸化压裂前 | 0.012 | 0.017 | 0.031 | 0.060 | 0 |
酸化压裂后 | 0.035 | 0.066 | 0.055 | 0.089 | 0 |
[1] | 廖明光, 廖成基, 陈小凡. 动静态方法在油藏井间连通性分析中的应用研究[J]. 特种油气藏, 2020, 27(3):131-136. |
LIAO Mingguang, LIAO Chengji, CHEN Xiaofan. Application of dynamic and static analyses in inter-well connectivity characterization[J]. Special Oil & Gas Reservoirs, 2020, 27(3):131-136. | |
[2] | 瞿朝朝, 刘斌, 宋洪亮, 等. 基于动静态资料综合判断聚驱后的油藏井间连通性:以渤海L油田为例[J]. 石油地质与工程, 2021, 35(2):76-79. |
QU Chaochao, LIU Bin, SONG Hongliang, et al. Inter well connectivity of reservoir after polymer flooding based on dynamic and static data coupling judgment method:By taking Bohai L oilfield as an example[J]. Petroleum Geology and Engineering, 2021, 35(2):76-79. | |
[3] | 邓兴梁, 曹鹏, 李世银, 等. 缝洞型碳酸盐岩油藏连通性识别方法探讨:以轮古西潜山油藏为例[J]. 重庆科技学院学报(自然科学版), 2012, 14(3):71-74. |
DENG Xingliang, CAO Peng, LI Shiyin, et al. The method to distinguish the connectivity of the carbonate fractured-vuggy reservoir:Taking the Lunguxi reservoir as example[J]. Journal of Chongqing University of Science and Technology(Natural Science Edition), 2012, 14(3):71-74. | |
[4] | 杜鹃红. 干扰试井技术在油藏描述和动态调整中的应用[J]. 油气井测试, 2008, 17(6):32-34. |
DU Juanhong. Application of tech of interference well test in oil reservoir description and performance adjustment[J]. Well Testing, 2008, 17(6):32-34. | |
[5] | 苏群英, 熊念, 张静. 应用脉冲试井分析注聚油藏井间连通性[J]. 辽宁化工, 2012, 41(9):951-952. |
SU Qunying, XIONG Nian, ZHANG Jing. Analyzing inter-well connectivity of polymer-flooded reservoirs with pulse-testing method[J]. Liaoning Chemical Industry, 2012, 41(9):951-952. | |
[6] | 张新宝, 李留仁. 碳酸盐岩缝洞型油藏井间连通性的示踪剂监测:以塔河油田T402注采井组为例[J]. 西安石油大学学报(自然科学版), 2019, 34(6):55-59. |
ZHANG Xinbao, LI Liuren. Tracer monitoring for interwell connectivity in fractured-vuggy carbonate reservoirs:A case study of T402 injection-production well group in Tahe oilfield[J]. Journal of Xi’an Shiyou University(Natural Science Edition), 2019, 34(6):55-59. | |
[7] | 易斌, 崔文彬, 鲁新便, 等. 塔河油田碳酸盐岩缝洞型储集体动态连通性分析[J]. 新疆石油地质, 2011, 32(5):469-472. |
YI Bin, CUI Wenbin, LU Xinbian, et al. Analysis of dynamic connectivity on carbonate reservoir with fracture and cave in Tahe field,Tarim Basin[J]. Xinjiang Petroleum Geology, 2011, 32(5):469-472. | |
[8] | 康志宏, 陈琳, 鲁新便, 等. 塔河岩溶型碳酸盐岩缝洞系统流体动态连通性研究[J]. 地学前缘, 2012, 19(2):110-120. |
KANG Zhihong, CHEN Lin, LU Xinbian, et al. Fluid dynamic connectivity of karst carbonate reservoir with fracture & cave system in Tahe oilfield[J]. Earth Science Frontiers, 2012, 19(2):110-120. | |
[9] | 曹丹平, 印兴耀, 张繁昌, 等. 井间地震资料精细解释方法研究与应用[J]. 地球物理学进展, 2008, 23(4):1209-1215. |
CAO Danping, YIN Xingyao, ZHANG Fanchang, et al. On the interpretation method research and application of crosswell seismic data[J]. Progress in Geophysics, 2008, 23(4):1209-1215. | |
[10] |
李海英, 李伟, 刘军, 等. 两步相控反演在塔里木盆地顺北8井区碳酸盐岩断控储集体预测中的应用[J]. 天然气地球科学, 2023, 34(11):1961-1970.
doi: 10.11764/j.issn.1672-1926.2023.05.009 |
LI Haiying, LI Wei, LIU Jun, et al. Two-step facies-constrained inversion in prediction of carbonate rock fault-controlled reservoirs with post stack seismic in No.8 structure of Shunbei block,Tarim Basin[J]. Natural Gas Geoscience, 2023, 34(11):1961-1970.
doi: 10.11764/j.issn.1672-1926.2023.05.009 |
|
[11] | 廖红伟, 王琛, 左代荣. 应用不稳定试井判断井间连通性[J]. 石油勘探与开发, 2002, 29(4):87-89. |
LIAO Hongwei, WANG Chen, ZUO Dairong. Applying transient testing to the judgement of inter-well connectivity[J]. Petroleum Exploration and Development, 2002, 29(4):87-89. | |
[12] | 彭文丰, 漆智, 张乔良, 等. 井间连通综合分析方法在复杂断块油藏的应用[J]. 海洋石油, 2015, 35(3):33-37. |
PENG Wenfeng, QI Zhi, ZHANG Qiaoliang, et al. Application of comprehensive method for analyzing interwell communication in complex faulted block reservoirs with distributary channels[J]. Offshore Oil, 2015, 35(3):33-37. | |
[13] | 顾浩, 康志江, 尚根华, 等. 超深层断控缝洞型油藏油井合理产能优化方法及应用[J]. 新疆石油地质, 2023, 44(1):64-69. |
GU Hao, KANG Zhijiang, SHANG Genhua, et al. Reasonable productivity optimization methods and application in ultra-deep fault-controlled fractured-vuggy reservoirs[J]. Xinjiang Petroleum Geology, 2023, 44(1):64-69. | |
[14] | 刘学利, 谭涛, 陈勇, 等. 顺北一区断溶体油藏溶解气驱开发特征[J]. 新疆石油地质, 2023, 44(2):195-202. |
LIU Xueli, TAN Tao, CHEN Yong, et al. Development characteristics of solution-gas drive in fault-karst reservoirs in Shunbei-1 block[J]. Xinjiang Petroleum Geology, 2023, 44(2):195-202. | |
[15] | 卢志强, 马乃拜, 尼加提, 等. 顺北油田深层断溶体内部结构物探表征研究[J]. 内蒙古石油化工, 2022, 48(6):115-120. |
LU Zhiqiang, MA Naibai, NI Jiati, et al. Research and application of fault-karst characterization technology in Shunbei oilfield[J]. Inner Mongolia Petrochemical Industry, 2022, 48(6):115-120. | |
[16] | 刘军, 李伟, 龚伟, 等. 顺北地区超深断控储集体地震识别与描述[J]. 新疆石油地质, 2021, 42(2):238-245. |
LIU Jun, LI Wei, GONG Wei, et al. Seismic identification and description of ultra-deep fault-controlled reservoirs in Shunbei area[J]. Xinjiang Petroleum Geology, 2021, 42(2):238-245. | |
[17] | 潘婷婷, 蔡银涛, 葸晓宇, 等. 井间储层连通性分析技术在新疆油田的应用[J]. 石油地球物理勘探, 2022, 57(增刊2):179-184. |
PAN Tingting, CAI Yintao, XI Xiaoyu, et al. Application of reservoir connectivity analysis technology between wells in Xinjiang oilfield[J]. Oil Geophysical Prospecting, 2022, 57(Supp.2):179-184. | |
[18] | 查玉强. 基于试井反馈信号判定小层连通性技术[J]. 海洋石油, 2019, 39(2):29-34. |
ZHA Yuqiang. Technology for determining small layer connectivity based on well test feedback signals[J]. Offshore Oil, 2019, 39(2):29-34. | |
[19] | 熊国荣, 张国报, 李玖梅. 应用干扰试井资料确定文79北块合理注采井网[J]. 断块油气田, 2000, 7(4):38-40. |
XIONG Guorong, ZHANG Guobao, LI Jiumei. Determination of injection-production well pattern in the north of Wen 79 block with interference well test[J]. Fault-Block Oil & Gas Field, 2000, 7(4):38-40. | |
[20] | 苏泽中, 林加恩, 柏明星, 等. 天然能量开发阶段的缝洞型油藏井间连通性分析[J]. 深圳大学学报(理工版), 2020, 37(6):645-652. |
SU Zezhong, LIN Jiaen, BAI Mingxing, et al. Inter-well connectivity analysis in carbonate fracture-vuggy reservoir in natural energy development stage[J]. Journal of Shenzhen University(Science and Engineering), 2020, 37(6):645-652. | |
[21] | 张艺晓, 李小波, 尚根华, 等. 断溶体油藏应力敏感特征研究[J]. 油气藏评价与开发, 2023,13:(1)127-134. |
ZHANG Yixiao, LI Xiaobo, SHANG Genhua, et al. Stress sensitive characteristics of fault-karst reservoir[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(1):127-134. | |
[22] | 蒋廷学, 周珺, 贾文峰, 等. 顺北油气田超深碳酸盐岩储层深穿透酸压技术[J]. 石油钻探技术, 2019, 47(3):140-147. |
JIANG Tingxue, ZHOU Jun, JIA Wenfeng, et al. Deep penetration acid fracturing technology for ultra-deep oil and gas reservoirs in the Shunbei oil and gas field[J]. Petroleum Drilling Techniques, 2019, 47(3):140-147. | |
[23] | 赵兵, 李春月, 房好青, 等. 顺北断溶体油藏重复酸压时机优化研究[J]. 非常规油气, 2021, 8(5):100-105. |
ZHAO Bing, LI Chunyue, FANG Haoqing, et al. Optimization of repeated acid fracturing timing in Shunbei fault solution reservoir[J]. Unconventional Oil & Gas, 2021, 8(5):100-105. |
[1] | CAO Zicheng, GENG Feng, REN Lidan, JIANG Huashan, SHANG Kai, LIU Yongli. Exploration History and New Frontiers of Oil and Gas in Deep to Ultra-Deep Carbonate Reservoirs in Tarim Basin [J]. Xinjiang Petroleum Geology, 2025, 46(4): 395-402. |
[2] | YU Tengfei, HUANGFU Jingjing, CHEN Zhihui, WANG Hong. Methods of Reasonable Productivity Determination for Ultra-Deep Fault-Controlled Fractured-Vuggy Gas Reservoirs in Shunbei Area [J]. Xinjiang Petroleum Geology, 2025, 46(4): 505-511. |
[3] | WANG Qinghua, CAI Zhenzhong, ZHANG Yintao, WU Guanghui, XIE Zhou, WAN Xiaoguo, TANG Hao. Research Progress and Trend of Ultra-Deep Strike-Slip Fault-Controlled Hydrocarbon Reservoirs in Tarim Basin [J]. Xinjiang Petroleum Geology, 2024, 45(4): 379-386. |
[4] | XIONG Chang, SHEN Chunguang, ZHAO Xingxing, ZHAO Longfei, LI Shengqian, ZHOU Jie, PAN Tiancou. Segmentation of Strike-Slip Faults and Its Controls on Hydrocarbon Accumulation in Tarim Basin: A Case Study of FⅠ17 Strike-Slip Fault Zone [J]. Xinjiang Petroleum Geology, 2024, 45(4): 417-424. |
[5] | WANG Rujun, SUN Chong, YUAN Jingyi, LIU Ruidong, WANG Xuan, MA Yinglong, WANG Xupeng. Seismic Identification of Strike-Slip Fault Damage Zones Based on Structure Tensor Analysis: A Case Study of Ultra-Deep Carbonate Rocks in Fuman Oilfield [J]. Xinjiang Petroleum Geology, 2024, 45(4): 475-482. |
[6] | GENG Jie, YUE Ping, YANG Wenming, YANG Bo, ZHAO Bin, ZHANG Rujie. Dynamic Reserves Calculation Method for Fault-Controlled Carbonate Reservoirs [J]. Xinjiang Petroleum Geology, 2024, 45(4): 499-504. |
[7] | WANG Rujun, WANG Peijun, NIU Ge, WANG Huailong, ZHANG Jie, LIANG Ruihan, ZHAO Xinyue. Methods for Calculating Oil Column Height in Reservoirs Controlled by Deep and Large Faults [J]. Xinjiang Petroleum Geology, 2023, 44(zk(English)): 143-147. |
[8] | WANG Rujun, WANG Peijun, NIU Ge, WANG Huailong, ZHANG Jie, LIANG Ruihan, ZHAO Xinyue. Methods for Calculating Oil Column Height in Reservoirs Controlled by Deep and Large Faults [J]. Xinjiang Petroleum Geology, 2023, 44(5): 608-612. |
[9] | DUAN Yongxian, SONG Jinpeng, HUAN Zhipeng, YANG Liangang, ZHOU Peng, LV Duanchuan, TIAN Zhihong. Formation, Preservation and Distribution of Abnormally High Pressure in Ordovician Carbonate Rocks in Northern and Central Tarim Basin [J]. Xinjiang Petroleum Geology, 2023, 44(4): 421-428. |
[10] | LIU Jun, LIAO Maohui, WANG Laiyuan, GONG Wei, HUANG Chao, ZHA Ming. Static Connectivity Evaluation on Fault-Controlled Reservoir System in the Middle Section of Shunbei No.4 Fault Zone,Shunbei Oilfield [J]. Xinjiang Petroleum Geology, 2023, 44(4): 456-464. |
[11] | CHEN Yong, ZHU Lele, LIU Xueli. Feasibility of Natural Gas Miscible Flooding in Ultra-Deep Fault-Controlled Reservoirs in Shunbei-1 Block [J]. Xinjiang Petroleum Geology, 2023, 44(2): 203-209. |
[12] | LI Chunbai. Petroleum Exploration History and Enlightenment in Hailar Basin [J]. Xinjiang Petroleum Geology, 2021, 42(3): 374-380. |
[13] | QI Lixin, YUN Lu, CAO Zicheng, LI Haiying, HUANG Cheng. Geological Reserves Assessment and Petroleum Exploration Targets in Shunbei Oil & Gas Field [J]. Xinjiang Petroleum Geology, 2021, 42(2): 127-135. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||