Xinjiang Petroleum Geology ›› 2025, Vol. 46 ›› Issue (5): 622-629.doi: 10.7657/XJPG20250513
• APPLICATION OF TECHNOLOGY • Previous Articles Next Articles
WU Bohan(), LI Fang, TANG Di, WU Yixiong, LUO Yuhu, XIAO Dazhi, ZHANG Shunchao
Received:
2024-12-24
Revised:
2025-01-19
Online:
2025-10-01
Published:
2025-09-30
CLC Number:
WU Bohan, LI Fang, TANG Di, WU Yixiong, LUO Yuhu, XIAO Dazhi, ZHANG Shunchao. A Logging-Based Permeability Prediction Method Based on Dual-Driven Model for Low-Permeability Gas Reservoirs: A Case Study of Dongfang Gas Field in Yinggehai Basin[J]. Xinjiang Petroleum Geology, 2025, 46(5): 622-629.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 2.
Comprehensive logging-derived sweet spot indexes for different reservoirs in the study area"
孔隙度/ % | 渗透率/ mD | 含水 饱和度/% | 深电阻率与 泥岩电阻率 之比 | 解释结论 | 测井甜点 综合指数 |
---|---|---|---|---|---|
20 | 4.00 | 50 | 2.4 | 气层 | 53.67 |
15 | 1.00 | 50 | 2.4 | 气层 | 30.98 |
13 | 0.20 | 50 | 2.4 | 气层 | 14.88 |
15 | 1.00 | 75 | 1.2 | 气水同层 | 7.38 |
15 | 1.00 | 95 | 1.0 | 水层 | 1.30 |
10 | 0.05 | 95 | 1.1 | 干层 | 0.39 |
[1] | 郑炀, 徐锦绣, 刘欢, 等. 基于随钻核磁测井的渗透率评价方法及其应用:以渤海锦州油田古近系沙河街组为例[J]. 中国海上油气, 2019, 31(2):69-75. |
ZHENG Yang, XU Jinxiu, LIU Huan, et al. A permeability evaluation method based on NMR logging while drilling and its application:Taking Paleogene Shahejie formation in Jinzhou oilfield of Bohai Sea as an example[J]. China Offshore Oil and Gas, 2019, 31(2):69-75. | |
[2] | 吴勃翰. 致密砂岩储层孔隙结构评价方法及应用研究[D]. 北京: 中国石油大学(北京), 2022. |
WU Bohan. Study on the evaluation and application of pore structure in tight sandstone reservoir[D]. Beijing: China University of Petroleum(Beijing), 2022. | |
[3] | SHEN Bo, WU Dong, WANG Zhonghao. A new method for permeability estimation from conventional well logs in glutenite reservoirs[J]. Journal of Geophysics and Engineering, 2017, 14(5):1268-1274. |
[4] | 李雄炎, 秦瑞宝, 曹景记, 等. 白云岩储层特征与渗透率评价方法:以伊拉克美索不达米亚盆地古近系为例[J]. 中国海上油气, 2024, 36(3):81-94. |
LI Xiongyan, QIN Ruibao, CAO Jingji, et al. Dolomite reservoir characteristics and permeability evaluation methods:An example from the Paleogene,Mesopotamian Basin,Iraq[J]. China Offshore Oil and Gas, 2024, 36(3):81-94. | |
[5] |
刘土亮, 胡向阳, 袁伟, 等. 取心井渗透率数值模拟及精细评价方法研究[J]. 录井工程, 2023, 34(4):55-60.
doi: 10.3969/j.issn.1672-9803.2023.04.009 |
LIU Tuliang, HU Xiangyang, YUAN Wei, et al. Research on numerical simulation and fine evaluation methods for permeability of cored wells[J]. Mud Logging Engineering, 2023, 34(4):55-60.
doi: 10.3969/j.issn.1672-9803.2023.04.009 |
|
[6] | 汤翟, 吴勃翰, 吴一雄, 等. 海上低渗气藏储层分类及测井渗透率精细评价:以莺琼盆地DF13-A气田为例[J/OL]. 中国海上油气:1-12. [2025-03-10]. ttps://link.cnki.net/urlid/11.5339.TE.20250307.1443.002 . |
TANG DI, WU Bohan, WU Yixiong, et al. Reservoir classification and fine logging permeability evaluation of offshore low-permeability gas reservoirs:A case study of the DF13-A gas field,Yingqiong Basin[J/OL]. China Offshore Oil and Gas:1-12. [2025-03-10]. ttps://link.cnki.net/urlid/11.5339.TE.20250307.1443.002 . | |
[7] | TIMUR A. Pulsed nuclear magnetic resonance studies of porosity,movable fluid,and permeability of sandstones[J]. Journal of Petroleum Technology, 1969, 21(6):775-786. |
[8] | COATES G, DUMANOIR J L. A new approach to improved log-derived permeability[R]. SPWLA 14th Annual Logging Symposium, 1973. |
[9] | 郭同政, 申富豪, 饶博, 等. 各向异性孔隙地层随钻声波测井理论模拟及应用[J]. 科学技术与工程, 2023, 23(28):11962-11971. |
GUO Tongzheng, SHEN Fuhao, RAO Bo, et al. Theoretical simulation and application of acoustic logging while drilling in anisotropic porous formation[J]. Science Technology and Engineering, 2023, 23(28):11962-11971. | |
[10] |
李宁, 徐彬森, 武宏亮, 等. 人工智能在测井地层评价中的应用现状及前景[J]. 石油学报, 2021, 42(4):508-522.
doi: 10.7623/syxb202104008 |
LI Ning, XU Binsen, WU Hongliang, et al. Application status and prospects of artificial intelligence in well logging and formation evaluation[J]. Acta Petrolei Sinica, 2021, 42(4):508-522.
doi: 10.7623/syxb202104008 |
|
[11] | JAMSHIDIAN M, HADIAN M, ZADEH M M, et al. Prediction of free flowing porosity and permeability based on conventional well logging data using artificial neural networks optimized by imperialist competitive algorithm:A case study in the South Pars gas field[J]. Journal of Natural Gas Science and Engineering, 2015, 24:89-98. |
[12] | ZHU Lingqi, ZHANG Chong, WEI Yang, et al. Permeability prediction of the tight sandstone reservoirs using hybrid intelligent algorithm and nuclear magnetic resonance logging data[J]. Arabian Journal for Science and Engineering, 2017, 42(4):1643-1654. |
[13] | 赵军, 张涛, 何胜林, 等. 基于参数优选的储层渗透率深度置信网络模型预测初探[J]. 油气藏评价与开发, 2021, 11(4):577-585. |
ZHAO Jun, ZHANG Tao, HE Shenglin, et al. Prediction of reservoir permeability by deep belief network based on optimized parameters[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(4):577-585. | |
[14] | SEN S, ABIOUI M, GANGULI S S, et al. Petrophysical heterogeneity of the Early Cretaceous Alamein dolomite reservoir from North Razzak oil field,Egypt integrating well logs,core measurements,and machine learning approach[J]. Fuel, 2021, 306(15):21698. |
[15] | 李宁, 王克文, 武宏亮, 等. 渗透率测井评价:现状及发展方向[J]. 石油科学通报, 2023, 8(4):432-444. |
LI Ning, WANG Kewen, WU Hongliang, et al. Permeability logging evaluation:Current status and development directions[J]. Petroleum Science Bulletin, 2023, 8(4):432-444. | |
[16] | CHEN Changhsu, LIN Zsayshing. A committee machine with empirical formulas for permeability prediction[J]. Computers & Geosciences, 2006, 32(4):485-496. |
[17] | BAI Yang, TAN Maojin, SHI Yujiang, et al. Regression committee machine and petrophysical model jointly driven parameters prediction from wireline logs in tight sandstone reservoirs[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:1-9. |
[18] | WU Bohan, XIE Ranhong, LIU Mi, et al. Novel method for predicting mercury injection capillary pressure curves of tight sandstone reservoirs using NMR T2 distributions[J]. Energy & Fuels, 2021, 35(19):15607-15617. |
[19] |
吴克强, 裴健翔, 胡林, 等. 莺歌海盆地大—中型气田成藏模式及勘探方向[J]. 石油学报, 2023, 44(12):2200-2216.
doi: 10.7623/syxb202312012 |
WU Keqiang, PEI Jianxiang, HU Lin, et al. Accumulation model and exploration direction of medium-large gas fields in Yinggehai Basin[J]. Acta Petrolei Sinica, 2023, 44(12):2200-2216.
doi: 10.7623/syxb202312012 |
|
[20] | 李华, 杨朝强, 周伟, 等. 莺歌海盆地东方1-1气田中新统黄流组浅海多级海底扇形成机理及储层分布[J]. 石油与天然气地质, 2023, 44(2):429-440. |
LI Hua, YANG Zhaoqiang, ZHOU Wei, et al. Genetic mechanism and reservoir distribution of shallow-marine multi-stepped submarine fans in the Miocene Huangliu formation of Dongfang 1-1 gas field,Yinggehai Basin[J]. Oil & Gas Geology, 2023, 44(2):429-440. | |
[21] | 关耀, 叶青, 张冲, 等. 高压低渗透碎屑岩储层孔隙结构特征及分类评价:以莺歌海盆地东方A-1区黄流组一段为例[J]. 东北石油大学学报, 2024, 48(5):75-89. |
GUAN Yao, YE Qing, ZHANG Chong, et al. Pore structure characteristics and classification evaluation of high-pressure and low-permeability clastic reservoirs:A case study of the Huangliu formation in the eastern A-1 area of Yinggehai Basin[J]. Journal of Northeast Petroleum University, 2024, 48(5):75-89. | |
[22] | GAO Lun, XIE Ranhong, GUO Jiangfeng, et al. Method for predicting mercury injection capillary pressure curve of tight sandstone using NMR data[R]. London,UK:81th EAGE Conference & Exhibition, 2019. |
[23] | WU Bohan, XIE Ranhong, XU Chenyu, et al. A new method for predicting capillary pressure curves based on NMR echo data:Sandstone as an example[J]. Journal of Petroleum Science and Engineering, 2021, 202:108581. |
[24] | 唐军, 何泽, 申威, 等. 对标产能的碳酸盐岩储集层测井分类评价:以塔里木盆地托甫台地区一间房组为例[J]. 新疆石油地质, 2023, 44(1):112-118. |
TANG Jun, HE Ze, SHEN Wei, et al. Productivity-based classified logging evaluation of carbonate reservoirs:A case study on Yijianfang formation in Tuofutai area,Tarim Basin[J]. Xinjiang Petroleum Geology, 2023, 44(1):112-118. | |
[25] | WU Bohan, XIE Ranhong, XIAO Lizhi, et al. Integrated classification method of tight sandstone reservoir based on principal component analysis-simulated annealing genetic algorithm-fuzzy cluster means[J]. Petroleum Science, 2023, 20(5):2747-2758. |
[26] | 覃建华, 李映艳, 杜戈峰, 等. 基于核磁共振测井的页岩油产能分析及甜点评价[J]. 新疆石油地质, 2024, 45(3):317-326. |
QIN Jianhua, LI Yingyan, DU Gefeng, et al. NMR logging-based productivity analysis and sweet spot evaluation for shale oil[J]. Xinjiang Petroleum Geology, 2024, 45(3):317-326. | |
[27] | 张琳琳, 王孔杰, 赖枫鹏, 等. 鄂尔多斯盆地西缘奥陶系乌拉力克组海相页岩气储层甜点分类评价[J]. 石油实验地质, 2024, 46(1):191-201. |
ZHANG Linlin, WANG Kongjie, LAI Fengpeng, et al. Classification and evaluation of sweet spots of marine shale gas reservoir in Ordovician Wulalike formation on the westen margin of Ordos Basin[J]. Petroleum Geology & Experiment, 2024, 46(1):191-201. |
[1] | WEI Hongkun, WANG Jian, WANG Danling, LU Yuhao, ZHOU Yaqin, ZHAO Peng. Microscale Salt Tolerance and Profile Control of CO2 Foam in High-Salinity, Low-Permeability Reservoirs [J]. Xinjiang Petroleum Geology, 2024, 45(6): 703-710. |
[2] | LI Yuanduo, DING Shuaiwei, ZHANG Meng, XU Chuan, FAN Wenyu, QU Chuanchao. Sensitivity Analysis on Injection-Production Parameters for CO2 EOR and Storage in Low-Permeability Reservoirs Considering Storage Mechanism [J]. Xinjiang Petroleum Geology, 2024, 45(6): 711-718. |
[3] | QIN Jianhua, LI Yingyan, DU Gefeng, ZHOU Yang, DENG Yuan, PENG Shouchang, XIAO Dianshi. NMR Logging-Based Productivity Analysis and Sweet Spot Evaluation for Shale Oil [J]. Xinjiang Petroleum Geology, 2024, 45(3): 317-326. |
[4] | ZOU Yang, QI Yanping, SONG Dong, CHEN Wenshun, WEI Panyun. Geological Characteristics and Sweet Spot Evaluation of Shale Oil Reservoir in Fengcheng Formation in Well Maye-1 [J]. Xinjiang Petroleum Geology, 2022, 43(6): 714-723. |
[5] | LIU Caiguang, JI Ruixue, WANG Wei, ZHANG Rong. Factors Influencing Shale Oil Production and Sweet Spot Evaluation of Fengcheng Formation,Mahu Sag [J]. Xinjiang Petroleum Geology, 2022, 43(6): 733-742. |
[6] | DAI Jianwen, ZHANG Wei, WANG Hua, YANG Jiao, TU Yi, LI Qi. Architecture and Prediction of Clastic Reservoirs in Offshore Oilfields With Sparse Well Pattern: A Case Study on L14 Oilfield in Lufeng Sag in Pearl River Mouth Basin [J]. Xinjiang Petroleum Geology, 2022, 43(5): 526-536. |
[7] | LI Ning, YANG Lin, ZHENG Xiaomin, ZHANG Jinhai, LIU Yichen, MA Jiong. Evaluation on Injection-Production Connectivity of Low-Permeability Reservoirs Based on Tracer Monitoring and Numerical Simulation [J]. Xinjiang Petroleum Geology, 2021, 42(6): 735-740. |
[8] | ZHAO Yunhai, WANG Jian, HUANG Weihao, ZHANG Liwei, PENG Qilin, DU Hong. Experiments on Controlling Gas Channeling in Low-Permeability Reservoirs by Enhanced CO2 Foam System With Nano-Microspheres [J]. Xinjiang Petroleum Geology, 2021, 42(4): 480-486. |
[9] | XIAO Zhipeng, YANG Shenglai, MA Xueli, HAN Jifan, WANG Mengyu. Adaptability Evaluation of Nitrogen Foam Flooding After Water-Flooding in Low-Permeability Light Oil Reservoirs [J]. Xinjiang Petroleum Geology, 2020, 41(6): 729-734. |
[10] | SONG Ruiyou, YU Junfeng, HAN Guangming, HAO Defeng, YANG Baocheng. Diapiric Hydro-Dynamic Balance System and Gas Reservoir Model in Yinggehai Basin [J]. , 2016, 37(5): 1-1. |
[11] | TONG Chuanxin1,2, MA Jian3, PEI Jianxiang2, XU Xinde2, LIU Ping2. Geochemical Characteristics andOrigin Types of MidDeep Natural Gas in Dongfang AreaYinggehai Basin [J]. , 2015, 36(3): 1-1. |
[12] | CHEN Zhihong1,2, YING Mingxiong2, CHEN Dianyuan2. HighFrequency Sequence Unit Interpretation Method Based on Seismic SedimentologyAn example from DistrictA in Yinggehai basin [J]. , 2014, 35(4): 1-1. |
[13] | L? Xiaowei1, ZHANG Shaonan1a,2, FU Meiyan1, LIU Jinghuan3, ZHANG Ya2, ZHOU Yong4. The Mechanism of HighTemperature and Overpressure Sandstone Reservoir Development of Huangliu Formation in Dongfang Area of Yinggehai Basin [J]. , 2014, 35(1): 1-1. |
[14] | LIAO Hai-ying, LV Cheng-yuan, ZHAO Shu-xia, CHEN Yan, HE Ying-fu, ZHOU Yin-bang, WANG Qiang. Influencing Factors of CO2 Flooding in Low Permeability Reservoir with Reservoir Numerical Simulation [J]. Xinjiang Petroleum Geology, 2011, 32(5): 520-522. |
[15] | ZHANG Xiao-liang, ZHANG Jin-qing. Calculation Method of Natural Depletion Oil Recovery for Micro-fractured Low Permeability Reservoirs [J]. Xinjiang Petroleum Geology, 2011, 32(4): 409-411. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||