Xinjiang Petroleum Geology ›› 2024, Vol. 45 ›› Issue (6): 671-679.doi: 10.7657/XJPG20240605
• OIL AND GAS EXPLORATION • Previous Articles Next Articles
LI Yunpeng1(), LIN Xuechun1, YU Xingchen2, KANG Zhihong2(
), LI Peijing1, WANG Yajing1, QI Aiping1
Received:
2024-04-25
Revised:
2024-06-04
Online:
2024-12-01
Published:
2024-11-26
CLC Number:
LI Yunpeng, LIN Xuechun, YU Xingchen, KANG Zhihong, LI Peijing, WANG Yajing, QI Aiping. Identification and Modeling of Micro-Minor Fractures in Thin Biolimestones in Wangxuzhuang Oilfield[J]. Xinjiang Petroleum Geology, 2024, 45(6): 671-679.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1.
Results of core orientation analysis for Esx1 $\operatorname{Es}_{1}^{x}$ in Wangxuzhuang oilfield"
井名 | 地理坐标下黏滞剩磁 相对标志线的偏角/(°) | 地理坐标下标志线方位角/ (°) | 误差置信圆/ (°) | 裂缝产状 |
---|---|---|---|---|
岐606井 | 312.9 | 47.1 | 10.1 | 走向为60°,2条直立裂缝 |
305.4 | 54.6 | 10.0 | ||
282.0 | 78.0 | 10.1 | ||
岐607井 | 306.2 | 53.8 | 14.6 | 走向为60°,高角度裂缝 |
302.8 | 57.2 | 8.6 | ||
293.0 | 67.0 | 13.4 | ||
岐608井 | 283.9 | 76.1 | 4.7 | 走向为78°,2条低角度裂缝 |
281.5 | 78.5 | 6.9 | ||
280.3 | 79.7 | 10.7 | ||
岐609井 | 278.0 | 82.0 | 4.0 | 走向为83°,直立裂缝 |
276.0 | 84.0 | 5.8 | ||
277.0 | 83.0 | 4.0 | ||
岐613井 | 245.4 | 114.6 | 10.5 | 走向为117°,2条直立裂缝 |
243.3 | 116.7 | 8.3 | ||
240.5 | 119.5 | 10.0 | ||
岐630井 | 288.1 | 71.9 | 12.3 | 走向为74°,高角度裂缝 |
285.1 | 74.9 | 8.6 | ||
284.7 | 75.3 | 7.9 | ||
岐634井 | 260.0 | 100.0 | 6.9 | 走向为100°,高角度裂缝 |
258.3 | 101.7 | 8.3 | ||
261.6 | 98.4 | 10.9 | ||
岐635井 | 272.3 | 87.7 | 9.4 | 走向为86°,直立裂缝 |
273.2 | 86.8 | 9.7 | ||
276.5 | 83.5 | 11.3 | ||
岐637井 | 99.0 | 261.0 | 6.5 | 走向为257°,直立裂缝 |
103.8 | 256.2 | 11.1 | ||
107.5 | 252.5 | 5.7 | ||
岐643井 | 308.2 | 51.8 | 3.0 | 走向为37°,高角度裂缝 |
335.7 | 24.3 | 8.1 | ||
325.0 | 35.0 | 10.4 | ||
岐646井 | 261.3 | 98.7 | 11.6 | 走向为83°,高角度裂缝 |
279.3 | 80.7 | 8.8 | ||
291.7 | 68.3 | 9.0 | ||
岐647井 | 99.0 | 261.0 | 6.5 | 走向为257°,高角度裂缝 |
103.8 | 256.2 | 11.1 | ||
107.5 | 252.5 | 5.7 | ||
岐648井 | 84.8 | 275.2 | 8.6 | 走向为265°,直立裂缝 |
95.1 | 264.9 | 11.3 | ||
104.6 | 255.4 | 6.3 | ||
岐649井 | 116.4 | 243.6 | 10.4 | 走向为252°,水平裂缝 |
105.1 | 254.9 | 6.6 | ||
103.9 | 256.1 | 10.2 | ||
岐652井 | 130.0 | 260.0 | 4.0 | 走向为261°,2条高角度裂缝 |
138.0 | 252.0 | 5.8 | ||
119.6 | 270.4 | 4.0 | ||
岐3井 | 94.8 | 265.2 | 15.2 | 走向为269°,2条直立裂缝 |
52.4 | 307.6 | 17.1 | ||
87.3 | 272.7 | 11.4 | ||
岐5井 | 199.2 | 160.8 | 1.7 | 走向为160°,高角度裂缝 |
199.2 | 160.8 | 5.2 | ||
201.0 | 159.0 | 1.8 |
[1] | 吴勇, 马水平, 黄晓娣, 等. 王徐庄油田碳酸盐岩储层裂缝展布特征[J]. 特种油气藏, 2008, 15(增刊):46-48. |
WU Yong, MA Shuiping, HUANG Xiaodi, et al. Characteristics of fracture spreading in carbonate reservoirs of Wangxuzhuang oilfield[J]. Special Oil & Gas Reservoirs, 2008,15 (Supp.) :46-48. | |
[2] | 张蕾. 王徐庄油田裂缝性生物灰岩油藏深部调堵、调驱技术研究[D]. 西安: 西安石油大学, 2017. |
ZHANG Lei. Study on deep water plugging and profile control in fractured biogenic limestone reservoir in the Wangxu oilfield[D]. Xi’an: Xi’an Shiyou University, 2017. | |
[3] | KRANZ R L. Microcracks in rocks:A review[J]. Tectonophysics, 1983, 100(1/2/3):449-480. |
[4] | ANDERS M H, LAUBACH S E, SCHOLZ C H. Microfractures:A review[J]. Journal of Structural Geology, 2014, 69:377-394. |
[5] | 杨远江, 杨俊生, 臧苡澄, 等. 王徐庄油田歧646-2井沙一下碳酸盐岩储层特征研究[J]. 地球科学前沿, 2019, 9(10):884-897. |
YANG Yuanjiang, YANG Junsheng, ZANG Yicheng, et al. Reservoir characteristics of carbonate rocks in Well Qi646-2 of Wangxuzhuang oilfield[J]. Advances in Geosciences, 2019, 9(10):884-897. | |
[6] | 刘平, 王志芳, 冯海燕, 等. 王徐庄油田沙一下亚段碳酸盐岩裂缝性储集层研究[J]. 录井工程, 2007, 18(2):69-73. |
LIU Ping, WANG Zhifang, FENG Haiyan, et al. Study on the fractured reservoir of the carbonate rock in Sha 1 lower sub-interval in Wangxuzhuang oilfield[J]. Mud Logging Engineering, 2007, 18(2):69-73. | |
[7] | LEI Qinghua, LATHAM J P, TSANG C F. The use of discrete fracture networks for modelling coupled geomechanical and hydrological behaviour of fractured rocks[J]. Computers and Geotechnics, 2017, 85:151-176. |
[8] | CAO Xiaoyan, GUO Shihui, LIN Juncong, et al. Online tracking of ants based on deep association metrics:Method,dataset and evaluation[J]. Pattern Recognition, 2020, 103:107233. |
[9] | PUDJI P, TAUFAN M, SESILIA N, et al. Identification and characterization of microfractures in carbonate samples[J]. Petroleum Exploration and Development, 2022, 49(2):415-427. |
[10] | 史从越, 薛秀凤, 张亚杰, 等. 王徐庄油田沙一下生物灰岩裂缝识别与研究[J]. 录井工程, 2004, 15(4):66-69. |
SHI Congyue, XUE Xiufeng, ZHANG Yajie, et al. Identification and study on the bio-limestone fracture of Wangxuzhuang oilfield[J]. Mud Logging Engineering, 2004, 15(4):66-69. | |
[11] | 唐宜家, 马天寿, 陈力力, 等. 基于二维裂缝网络数值模拟的干热岩储层热采效率评价[J]. 天然气工业, 2022, 42(4):94-106. |
TANG Yijia, MA Tianshou, CHEN Lili, et al. Evaluation on the heat extraction efficiency of hot dry rock reservoirs based on two-dimensional fracture network numerical simulation[J]. Natural Gas Industry, 2022, 42(4):94-106. | |
[12] | 杨丽娜, 许胜利, 魏莉, 等. 碳酸盐岩储层裂缝智能预测技术及其应用[J]. 大庆石油地质与开发, 2023, 42(4):131-138. |
YANG Lina, XU Shengli, WEI Li, et al. Intelligent prediction technique and its application for carbonate reservoir fractures[J]. Petroleum Geology & Oilfield Development in Daqing, 2023, 42(4):131-138. | |
[13] | 谢基海, 葛坤朋, 徐慧茹, 等. 古地磁学岩心定向方法回顾[J]. 地球物理学进展, 2020, 35(3):906-917. |
XIE Jihai, GE Kunpeng, XU Huiru, et al. Review of paleomagnetic core orientation method[J]. Progress in Geophysics, 2020, 35(3):906-917. | |
[14] | 史今雄, 赵向原, 潘仁芳, 等. 川中地区震旦系灯影组碳酸盐岩天然裂缝特征及其对气井产能影响[J]. 石油与天然气地质, 2023, 44(2):393-405. |
SHI Jinxiong, ZHAO Xiangyuan, PAN Renfang, et al. Characteristics of natural fractures in carbonate reservoirs and their impacts on well productivity in the Sinian Dengying formation,central Sichuan basin[J]. Oil & Gas Geology, 2023, 44(2):393-405. | |
[15] | 陈波, 赵海涛. 利用随机建模技术预测裂缝分布方向:以王徐庄油田为例[J]. 江汉石油学院学报, 2004, 26(4):42-45. |
CHEN Bo, ZHAO Haitao. Predicting fracture distributional direction by using stochastic modeling technique[J]. Journal of Jianghan Petroleum Institute, 2004, 26(4):42-45. | |
[16] | 唐军, 何泽, 申威, 等. 对标产能的碳酸盐岩储集层测井分类评价:以塔里木盆地托甫台地区一间房组为例[J]. 新疆石油地质, 2023, 44(1):112-118. |
TANG Jun, HE Ze, SHEN Wei, et al. Productivity-based classified logging evaluation of carbonate reservoirs:A case study on Yijianfang formation in Tuofutai area,Tarim basin[J]. Xinjiang Petroleum Geology, 2023, 44(1):112-118. | |
[17] | LIU Ruilin, LI Ningxi, FENG Qingfu, et al. Application of the triple porosity model in well-log effectiveness estimation of the carbonate reservoir in Tarim oilfield[J]. Journal of Petroleum Science and Engineering, 2009, 68 (1/2):40-46. |
[18] | 国景星, 杨少春, 闫建平. 测井地质学[M]. 北京: 石油工业出版社, 2021. |
GUO Jingxing, YANG Shaochun, YAN Jianping. Logging geology[M]. Beijing: Petroleum Industry Press, 2021. | |
[19] | 肖何, 张超谟, 苏向群. 应用测井资料定量识别碳酸盐岩沉积微相:以川东北元坝地区长兴组为例[J]. 科学技术与工程, 2020, 20(7):2573-2582. |
XIAO He, ZHANG Chaomo, SU Xiangqun. Quantitative discrimination of carbonate sedimentary microfacies by use of log data:Taking the Changxing formation in Yuanba region of northeastern Sichuan for example[J]. Science Technology and Engineering, 2020, 20(7):2573-2582. | |
[20] | RANGEL-GERMAN EDGAR R, KOVSCEK A R. Time-dependent matrix-fracture shape factors for partially and completely immersed fractures[J]. Journal of Petroleum Science and Engineering, 2006, 54 (3/4):149-163. |
[21] | 贾凌霄, 贾家磊, 张毅, 等. 改进BP神经网络在裂缝预测中的应用[J]. 工程地球物理学报, 2012, 9(3):301-305. |
JIA Lingxiao, JIA Jialei, ZHANG Yi, et al. Application of improved BP neural network to fracture prediction[J]. Chinese Journal of Engineering Geophysics, 2012, 9(3):301-305. | |
[22] | 蓝茜茜. 机器学习在碳酸盐岩储层测井评价中的应用[D]. 北京: 中国地质大学(北京), 2021. |
LAN Xixi. Well logging evaluation of carbonate reservoir using machine learning methods[D]. Beijing: China University of Geosciences (Beijing), 2021. | |
[23] | 娄高中, 谭毅. 基于PSO-BP神经网络的导水裂隙带高度预测[J]. 煤田地质与勘探, 2021, 49(4):198-204. |
LOU Gaozhong, TAN Yi. Prediction of the height of water flowing fractured zone based on PSO-BP neural network[J]. Coal Geology & Exploration, 2021, 49(4):198-204. | |
[24] | 蓝茜茜, 张逸伦, 康志宏. 基于样本优化的神经网络方法在储层裂缝识别中的应用[J]. 科学技术与工程, 2020, 20(21):8530-8536. |
LAN Xixi, ZHANG Yilun, KANG Zhihong. Application of neural network based on sample optimization in reservoir fracture identification[J]. Science Technology and Engineering, 2020, 20(21):8530-8536. | |
[25] | 蓝茜茜, 张逸伦, 康志宏, 等. 基于集成学习的碳酸盐岩储集体类型划分:以塔河油田T615井组为例[J]. 科学技术与工程, 2020, 20(18):7231-7238. |
LAN Xixi, ZHANG Yilun, KANG Zhihong, et al. Classification of carbonate reservoirs based on ensemble learning:A case study of T615 well group in Tahe oilfield[J]. Science Technology and Engineering, 2020, 20(18):7231-7238. | |
[26] | SMERAGLIA L, MERCURI M, TAVANI S, et al. 3D discrete fracture network (DFN) models of damage zone fluid corridors within a reservoir-scale normal fault in carbonates:Multiscale approach using field data and UAV imagery[J]. Marine and Petroleum Geology, 2021, 126:104902. |
[27] | 郎晓玲, 郭召杰. 基于DFN离散裂缝网络模型的裂缝性储层建模方法[J]. 北京大学学报(自然科学版), 2013, 49(6):964-972. |
LANG Xiaoling, GUO Zhaojie. Fractured reservoir modeling method based on discrete fracture network model[J]. Acta Scientiarum Naturalium(Universitatis Pekinensis), 2013, 49(6):964-972. | |
[28] | 胡浩浩, 鞠玮, 郭伟, 等. 川南海坝区块页岩气储层裂缝发育特征与预测[J]. 非常规油气, 2023, 10(1):61-68. |
HU Haohao, JU Wei, GUO Wei, et al. Development characteristics and prediction of natural fractures within shale gas reservoirs,Haiba block of southern Sichuan basin[J]. Unconventional Oil & Gas, 2023, 10(1):61-68. | |
[29] |
李晓梅, 张记刚, 陈超, 等. 准噶尔盆地西北缘玛2井区致密储层裂缝发育特征及定量预测[J]. 特种油气藏, 2022, 29(3):50-56.
doi: 10.3969/j.issn.1006-6535.2022.03.007 |
LI Xiaomei, ZHANG Jigang, CHEN Chao, et al. Fracture development characteristics and quantitative prediction of tight reservoirs in Well Block Ma 2,northwestern margin,Junggar basin[J]. Special Oil & Gas Reservoirs, 2022, 29(3):50-56. | |
[30] | 刘明, 李彦婧, 潘兰, 等. 南川地区页岩储层构造裂缝特征及其定量预测[J]. 非常规油气, 2023, 10(3):8-14. |
LIU Ming, LI Yanjing, PAN Lan, et al. Structural fracture characteristics and quantitative prediction of shale reservoir in Nanchuan area[J]. Unconventional Oil & Gas, 2023, 10(3):8-14. | |
[31] | 但玲玲, 史长林, 文佳涛, 等. 多信息融合裂缝建模技术在碳酸盐岩双重介质油藏开发中的应用[J]. 油气地质与采收率, 2022, 29(1):46-52. |
DAN Lingling, SHI Changlin, WEN Jiatao, et al. Application of multi-information fusion modeling technology for fractures in dual-medium carbonate reservoir[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(1):46-52. | |
[32] | 雷泽萱, 辛显康, 喻高明, 等. 基于数值模拟的油藏生产动态优化算法[J]. 新疆石油地质, 2022, 43(5):612-616. |
LEI Zexuan, XIN Xiankang, YU Gaoming, et al. Reservoir production performance optimization algorithm based on numerical simulation[J]. Xinjiang Petroleum Geology, 2022, 43(5):612-616. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||