Xinjiang Petroleum Geology ›› 2025, Vol. 46 ›› Issue (4): 498-504.doi: 10.7657/XJPG20250414
• APPLICATION OF TECHNOLOGY • Previous Articles Next Articles
LIU Rui(), HE Xinming(
), ZHANG Yun
Received:
2024-12-27
Revised:
2025-05-19
Online:
2025-08-01
Published:
2025-07-25
Contact:
HE Xinming
E-mail:liurui.xbsj@sinopec.com;hexinming9876@163.com
CLC Number:
LIU Rui, HE Xinming, ZHANG Yun. Bottom Water Identification and Water Control Strategy in Fault-Controlled Condensate Gas Reservoirs in Shunbei Oil and Gas Field, Tarim Basin[J]. Xinjiang Petroleum Geology, 2025, 46(4): 498-504.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1.
Original gas-water contacts of wells in Shunbei No.4 fault zone"
井名 | 气水界面 深度/m | 井名 | 气水界面 深度/m |
---|---|---|---|
顺北4-1H井 | -7 013.1 | 顺北41X井 | -7 999.0 |
顺北4-3H井 | -7 082.3 | 顺北4-4H井 | -7 593.6 |
顺北42X井 | -6 944.0 | 顺北45X井 | -7 786.1 |
顺北4-13H井 | -7 007.6 | 顺北4-6H井 | -7 412.9 |
顺北47X井 | -8 313.2 | 顺北4-9H井 | -7 374.0 |
顺北4-12H井 | -7 135.2 | 顺北43X井 | -7 285.6 |
顺北46X井 | -7 284.8 | 顺北4-5H井 | -7 593.9 |
顺北4-8H井 | -7 498.7 | 顺北44X井 | -7 859.0 |
顺北4-7H井 | -7 584.2 | 顺北4-10H井 | -7 584.1 |
顺北4-2H井 | -7 175.8 |
Table 2.
Static calculation results of aquifer volume multiple in Shunbei No.4 fault zone"
分段 | 井名 | 气藏孔隙 体积/104 m3 | 水体孔隙 体积/104 m3 | 静态水体 倍数 |
---|---|---|---|---|
北段 | 顺北44X井 | 31 572 | 74 352 | 0.4 |
顺北43X井 | 8 371 | 31 577 | 0.3 | |
顺北45X井 | 39 132 | 64 165 | 0.6 | |
中段 | 顺北4-4H井 | 23 356 | 52 360 | 0.4 |
顺北41X井 | 17 986 | 32 235 | 0.6 | |
顺北4-2H井 | 18 671 | 23 671 | 0.8 | |
顺北4-7H井 | 32 835 | 57 342 | 0.6 | |
顺北46X井 | 38 284 | 57 376 | 0.7 | |
南段 | 顺北4-12H井 | 16 733 | 42 778 | 0.4 |
顺北47X井 | 7 035 | 24 592 | 0.3 | |
顺北4-13H井 | 13 319 | 23 319 | 0.6 | |
顺北42X井 | 30 677 | 58 060 | 0.5 |
Table 3.
Water influx and aquifer volume multiple for typical wells in Shunbei No.4 fault zone"
分段 | 井名 | 储集体类型 | 物质平衡法计算储量/108 m3 | 水侵量/104 m3 | 动态水体倍数 |
---|---|---|---|---|---|
北段 | 顺北44X井 | 洞-缝-洞 | 21.6 | 0.6 | 1.0 |
顺北4-5H井 | 洞 | 16.2 | 27.1 | 1.3 | |
顺北4-9H井 | 洞 | 8.0 | 32.5 | 1.3 | |
顺北4-6H井 | 洞 | 10.5 | 15.8 | 1.2 | |
顺北45X井 | 洞-缝-洞 | 8.3 | 2.0 | 1.1 | |
中段 | 顺北4-4H井 | 缝-洞 | 3.3 | 6.5 | 1.1 |
顺北41X井 | 洞-缝-洞 | 4.7 | 15.4 | 1.3 | |
顺北4-7H井 | 洞 | 8.8 | 29.6 | 2.2 | |
顺北46X井 | 洞-缝-洞 | 3.7 | 32.3 | 1.5 | |
顺北4-12H井 | 缝-洞-缝-洞 | 3.9 | 16.7 | 1.2 | |
南段 | 顺北47X井 | 洞-缝-洞 | 4.5 | 8.1 | 1.1 |
顺北4-13H井 | 缝-洞-缝-洞 | 9.8 | 1.5 | 1.4 | |
顺北4-3H井 | 洞 | 5.7 | 18.9 | 1.2 | |
顺北4-1H井 | 缝-洞 | 3.8 | 9.9 | 1.7 |
Table 4.
Comprehensive evaluation of early water invasion warning in Shunbei No.4 fault zone"
分段 | 井名 | 避水 高度/m | 气水 连通模式 | 水体 倍数 | 气采出程度/ % | 采气速度/ % | 能量指示 曲线特征 | 水侵风险 等级 |
---|---|---|---|---|---|---|---|---|
北段 | 顺北44X井 | 861 | 直接连通 | 1.0 | 16.2 | 4.5 | 直线 | 中风险 |
顺北4-5H井 | 529 | 间接连通 | 1.3 | 19.6 | 9.2 | 直线 | 无风险 | |
顺北43X井 | 368 | 不连通 | 0.9 | 38.9 | 13.2 | 直线 | 高风险 | |
顺北4-9H井 | 520 | 间接连通 | 1.3 | 30.2 | 6.0 | 直线 | 无风险 | |
顺北4-6H井 | 369 | 不连通 | 1.2 | 24.3 | 11.6 | 直线 | 中风险 | |
顺北45X井 | 219 | 间接连通 | 1.1 | 19.4 | 6.2 | 末端上翘 | 高风险 | |
中段 | 顺北4-4H井 | 363 | 直接连通 | 1.1 | 31.7 | 31.7 | 直线 | 无风险 |
顺北41X井 | 858 | 间接连通 | 1.3 | 25.1 | 25.1 | 直线 | 中风险 | |
顺北4-2H井 | 87 | 直接连通 | 1.0 | 14.2 | 8.0 | 直线 | 无风险 | |
顺北4-7H井 | 578 | 间接连通 | 2.2 | 18.5 | 8.5 | 直线 | 无风险 | |
顺北4-8H井 | 468 | 间接连通 | 0.8 | 13.8 | 5.1 | 直线 | 无风险 | |
顺北46X井 | 45 | 直接连通 | 1.5 | 26.7 | 7.4 | 末端变缓 | 高风险 | |
顺北4-12H井 | 299 | 直接连通 | 1.2 | 22.6 | 22.6 | 直线 | 无风险 | |
南段 | 顺北47X井 | 279 | 间接连通 | 1.1 | 34.1 | 9.2 | 直线 | 无风险 |
顺北4-13H井 | 139 | 直接连通 | 1.4 | 5.4 | 5.4 | 末端变缓 | 高风险 | |
顺北42X井 | 337 | 直接连通 | 1.0 | 24.3 | 7.1 | 直线 | 中风险 | |
顺北4-3H井 | 336 | 间接连通 | 1.2 | 22.3 | 12.7 | 直线 | 无风险 | |
顺北4-1H井 | 124 | 直接连通 | 1.7 | 28.6 | 6.9 | 直线 | 低风险 |
Table 5.
Performance of gas injection for controlling water coning in Shunbei No.8 fault zone"
井名 | 注气 轮次 | 注气量/ 104 m3 | 注气压锥前 | 注气压锥后 | 增油量/ t | 增气量/ 104 m3 | ||||
---|---|---|---|---|---|---|---|---|---|---|
日产 油量/t | 日产气量/ 104 m3 | 含水率/ % | 日产 油量/t | 日产 气量/t | 含水率/ % | |||||
顺北84井 | 1 | 720 | 26.3 | 36 518 | 58.5 | 29.4 | 80 670 | 10.6 | 756 | 1 077 |
顺北801X井 | 1 | 500 | 7.4 | 54 119 | 12.5 | 12.4 | 96 412 | 1.2 | 715 | 605 |
顺北803井 | 1 | 997 | 19.2 | 62 334 | 11.6 | 44.7 | 86 413 | 32.2 | 3 417 | 323 |
顺北82井 | 2 | 1 260 | 11.7 | 38 075 | 64.7 | 20.1 | 55 875 | 3.7 | 739 | 157 |
[1] | 李云涛, 丁文龙, 韩俊, 等. 顺北地区走滑断裂带奥陶系碳酸盐岩裂缝分布预测与主控因素研究[J]. 地学前缘(中国地质大学(北京);北京大学), 2024, 31(5):263-287. |
LI Yuntao, DING Wenlong, HAN Jun, et al. Fractures in Ordovician carbonate rocks in strike-slip fault zone,Shunbei area:Fracture distribution prediction and fracture controlling factors[J]. Earth Science Frontiers(China University of Geoscience(Beijing);Peking University), 2024, 31(5):263-287. | |
[2] | 李冬梅. 顺北油气田含水高含凝析油凝析气井产能评价[J]. 新疆石油地质, 2023, 44(6):696-701. |
LI Dongmei. Productivity evaluation of condensate gas wells with water and high condensate oil content in Shunbei oil and gas field[J]. Xinjiang Petroleum Geology, 2023, 44(6):696-701. | |
[3] | 刘军, 李伟, 龚伟, 等. 顺北地区超深断控储集体地震识别与描述[J]. 新疆石油地质, 2021, 42(2):238-245. |
LIU Jun, LI Wei, GONG Wei, et al. Seismic identification and description of ultra-deep fault-controlled reservoirs in Shunbei area[J]. Xinjiang Petroleum Geology, 2021, 42(2):238-245. | |
[4] | 胡来东, 张志林, 徐雷良, 等. 塔里木盆地顺北地区碳酸盐岩断控储集体连通性量化表征[J]. 世界石油工业, 2024, 31(6):30-37. |
HU Laidong, ZHANG Zhilin, XU Leiliang, et al. Internal connectivity quantitative characterization of fault-controlled grid reservoirs in Shunbei area,Tarim Basin[J]. World Petroleum Industry, 2024, 31(6):30-37. | |
[5] | 朱莲花, 徐珊. 塔里木盆地顺北地区1号、5号断裂带奥陶系原油地球化学特征及控藏因素[J]. 世界石油工业, 2024, 31(4):58-68. |
ZHU Lianhua, XU Shan. Geochemical characteristics and reservoir controlling factors of Ordovician ultra-deep crude oil in No.1 and No.5 fault zones in Shunbei area[J]. World Petroleum Industry, 2024, 31(4):58-68. | |
[6] |
云露, 邓尚. 塔里木盆地深层走滑断裂差异变形与控储控藏特征:以顺北油气田为例[J]. 石油学报, 2022, 43(6):770-787.
doi: 10.7623/syxb202206003 |
YUN Lu, DENG Shang. Structure styles of deep strike-slip faults in Tarim Basin and the characteristics of their control on reservoir formation and hydrocarbon accumulation:A case study of Shunbei oil and gas field[J]. Acta Petrolei Sinica, 2022, 43(6):770-787. | |
[7] | 王来源, 龚伟, 李弘艳. 超深断控碳酸盐岩缝洞储集体地震预测与井轨迹设计:以顺北油田4号断裂带中北部为例[J]. 复杂油气藏, 2024, 17(3):288-295. |
WANG Laiyuan, GONG Wei, LI Hongyan. Seismic prediction and well trajectory design for ultra-deep fault-controlled carbonate fractured cave reservoirs:Taking the north-central part of fault zone No.4 in the Shunbei oilfield as an example[J]. Complex Hydrocarbon Reservoirs, 2024, 17(3):288-295. | |
[8] | 马新平, 马乃拜, 李峰, 等. 顺北特深断溶体油藏缝洞单元储量计算方法[J]. 内蒙古石油化工, 2023, 32(4):109-113. |
MA Xinping, MA Naibai, LI Feng, et al. The calculation method for the reservoir of the joint hole unit of Shunbei special deep fault reservoir[J]. Inner Mongolia Petrochemical Industry, 2023, 32(4):109-113. | |
[9] | 韩国锋, 陈方方, 刘曰武, 等. 水体倍数计算的拟稳态法[J]. 科学技术与工程, 2015, 15(5):96-99. |
HAN Guofeng, CHEN Fangfang, LIU Yuewu, et al. Pseudo-steady method for water volumetric multiple computation[J]. Science Technology and Engineering, 2015, 15(5):96-99. | |
[10] | 欧阳诚, 刘金库, 汪春浦, 等. 基于两级递进判别的致密砂岩气藏产水类型分析[J]. 世界石油工业, 2023, 30(4):80-85. |
OUYANG Cheng, LIU Jinku, WANG Chunpu, et al. Analysis of water production type of tight sandstone gas reservoir based on two-stage identification[J]. World Petroleum Industry, 2023, 30(4):80-85. | |
[11] | 王璐, 罗瑞兰, 张林, 等. 超深层碳酸盐岩气藏产能预测模型及影响因素研究[J]. 油气地质与采收率, 2024, 31(3):88-98. |
WANG Lu, LUO Ruilan, ZHANG Lin, et al. Investigation of productivity prediction model and influencing factors of ultradeep carbonate gas reservoir[J]. Petroleum Geology and Recovery Efficiency, 2024, 31(3):88-98. | |
[12] | 苏玉亮, 师颖, 李蕾, 等. 深层凝析气藏渗流规律及产能优化[J]. 大庆石油地质与开发, 2024, 43(5):149-157. |
SU Yuliang, SHI Ying, LI Lei, et al. Flow law and productivity optimization of deep condensate gas reservoir[J]. Petroleum Geology & Oilfield Development in Daqing, 2024, 43(5):149-157. | |
[13] | 郭彤楼, 王勇飞, 柯光明. 元坝气田长兴组超深层高含硫生物礁底水气藏持续稳产关键技术[J]. 天然气工业, 2023, 43(9):93-101. |
GUO Tonglou, WANG Yongfei, KE Guangming. Key technologies for sustainable production of ultra-deep high-sulfur bioherm gas reservoirs with bottom water in the Changxing formation,Yuanba gas field[J]. Natural Gas Industry, 2023, 43(9):93-101. | |
[14] | 吴克柳, 朱清源, 陈掌星, 等. 边底水碳酸盐岩气藏提高采收率的微观驱气效率[J]. 天然气工业, 2023, 43(1):122-131. |
WU Keliu, ZHU Qingyuan, CHEN Zhangxing, et al. Microscopic gas displacement efficiency of enhanced gas recovery in carbonate gas reservoirs with edge and bottom water[J]. Natural Gas Industry, 2023, 43(1):122-131. | |
[15] | 惠栋, 胡勇, 李滔, 等. 典型底水气藏开发特征及适宜开发对策启示[J]. 油气地质与采收率, 2023, 30(1):101-111. |
HUI Dong, HU Yong, LI Tao, et al. Development characteristics of typical bottom water gas reservoirs and enlightenment of suitable development countermeasures[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(1):101-111. | |
[16] | 张烈辉, 熊伟, 赵玉龙, 等. 衰竭底水气藏注CO2提高天然气采收率与碳封存机理[J]. 天然气工业, 2024, 44(4):25-38. |
ZHANG Liehui, XIONG Wei, ZHAO Yulong, et al. Mechanism of CO2 injection to enhance gas recovery and carbon storage in depleted bottom-water gas reservoirs[J]. Natural Gas Industry, 2024, 44(4):25-38. | |
[17] | 常涛, 陈建波, 汪跃, 等. 一种精细表征底水油藏全周期水淹形态的新方法[J]. 大庆石油地质与开发, 2024, 43(6):106-113. |
CHANG Tao, CHEN Jianbo, WANG Yue, et al. A new method for fine characterization of full-cycle waterflooded morphology in bottom water reservoirs[J]. Petroleum Geology & Oilfield Development in Daqing, 2024, 43(6):106-113. | |
[18] | 郭彤楼, 祝浪涛, 刘殷韬. 元坝气田长兴组生物礁高含硫底水气藏稳产中后期精准挖潜关键技术[J]. 天然气工业, 2024, 44(11):72-81. |
GUO Tonglou, ZHU Langtao, LIU Yintao. Key technologies for accurate potential tapping in the mid-to-late stage of stable production of Changxing formation bioherm high-sulfur gas reservoirs with bottom water in the Yuanba gas field,Sichuan Basin[J]. Natural Gas Industry, 2024, 44(11):72-81. | |
[19] | 邱浩, 文敏, 吴怡, 等. 南海油田惠州潜山裂缝性凝析油气藏控水实验[J]. 新疆石油地质, 2023, 44(1):84-92. |
QIU Hao, WEN Min, WU Yi, et al. Water control experiments in Huizhou buried-hill fractured condensate reservoirs in Nanhai oilfield[J]. Xinjiang Petroleum Geology, 2023, 44(1):84-92. | |
[20] | 周伟. 产水凝析气藏循环注气开发机理及动态分析方法研究[D]. 北京: 中国石油大学(北京), 2016. |
ZHOU Wei. Research on mechanism and dynamic analysis method of hydrous condensate gas reservoir developed by cyclic gas injection[D]. Beijing: China University of Petroleum (Beijing), 2016. |
[1] | CAO Zicheng, GENG Feng, REN Lidan, JIANG Huashan, SHANG Kai, LIU Yongli. Exploration History and New Frontiers of Oil and Gas in Deep to Ultra-Deep Carbonate Reservoirs in Tarim Basin [J]. Xinjiang Petroleum Geology, 2025, 46(4): 395-402. |
[2] | LI Zongjie, LI Hongyan, YANG Wei, GONG Wei, GAO Lijun. Five-Dimensional Seismic Fracture Prediction Technology in Shunbei Oil and Gas Field [J]. Xinjiang Petroleum Geology, 2025, 46(4): 403-409. |
[3] | HE Xinming, ZHANG Huitao, GUO Honghui. Controls of Fractures and In-Situ Stress on Productivity in Strike-Slip Fault Zones in Shunbei Area, Tarim Basin [J]. Xinjiang Petroleum Geology, 2025, 46(4): 410-418. |
[4] | YAN Bo, LUO Fuwen, CAO Yang, CHENG Linfeng. Dolomitization and Main Controlling Factors of Penglaiba Formation Reservoir in Tarim Basin [J]. Xinjiang Petroleum Geology, 2025, 46(4): 419-428. |
[5] | MEI Yongxu, ZHANG Jinning, PAN Yangyong, LIU Peiye, XIANG Honghan, NENG Yuan. Subsalt Structural Deformation Models in the Kuqa Foreland Thrust Belt [J]. Xinjiang Petroleum Geology, 2025, 46(4): 429-437. |
[6] | YU Tengfei, HUANGFU Jingjing, CHEN Zhihui, WANG Hong. Methods of Reasonable Productivity Determination for Ultra-Deep Fault-Controlled Fractured-Vuggy Gas Reservoirs in Shunbei Area [J]. Xinjiang Petroleum Geology, 2025, 46(4): 505-511. |
[7] | DU Huanfu, WANG Chunwei, XU Ming, HAN Junwei, ZHANG Fengjiao, CHEN Xinyi, YANG Xudong. A New Method for Identifying Fluid Types in Ultra-Deep Reservoirs in Shunbei Area, Tarim Basin [J]. Xinjiang Petroleum Geology, 2025, 46(4): 512-518. |
[8] | LONG Shengfang, HOU Yunchao, ZHAO Yuhua, ZHANG Jie, HAO Jinxin, GU Zhaoxing. Fault Characteristics and Influences on Jurassic Reservoirs in the Yanwu Area, Ordos Basin [J]. Xinjiang Petroleum Geology, 2025, 46(3): 329-337. |
[9] | LI Hui, NING Yaxin. Differences in Natural Fracture Development in Ultra-Deep Carbonate Reservoirs: A Case Study of YUEM Area in Tarim Basin [J]. Xinjiang Petroleum Geology, 2025, 46(2): 144-153. |
[10] | WANG Wei, DAI Mengying, CHEN Junkai, ZOU Yunlong, WU Qiong, JIANG Qiong, FENG Cheng. Identification and Distribution of Silurian Interlayers in YM 35 Well Block, Tarim Basin [J]. Xinjiang Petroleum Geology, 2025, 46(2): 154-162. |
[11] | LIAO Keyan, QIU Nansheng, CHANG Jian, LI Dan, LI Huili, MA Anlai, LI Jingying. Characteristics of Deep Geothermal Field in Shuntuoguole Area of Tarim Basin [J]. Xinjiang Petroleum Geology, 2025, 46(2): 163-171. |
[12] | WANG Yanli, ZHU Songbai, WU Weimin, NIE Yanbo, LIN Na, ZHAO Ji, HUANG Rui. Fault/Fracture Characteristics and Production Strategies for Ultra-Deep Fractured Tight Sandstone Gas Reservoirs [J]. Xinjiang Petroleum Geology, 2025, 46(2): 217-223. |
[13] | HUANG Chao, GUO Honghui, ZHANG Shenglong, ZHU Lintao, FENG Jianwei, DU He. In-situ Stress Characteristics and Fracture Distribution Prediction of Different Segments in Shunbei No.4 Strike-Slip Fault Zone, Tarim Basin [J]. Xinjiang Petroleum Geology, 2025, 46(1): 1-12. |
[14] | LIU Liwei, ZHOU Hui, YAN Bingxu, JIAO Yuwei, QU Yuanji, JIN Jiangning, PAN Yangyong. Water Invasion Characteristics and Stable Production Strategies in Kelasu Ultra-Deep Gas Field, Kuqa Depression [J]. Xinjiang Petroleum Geology, 2025, 46(1): 71-77. |
[15] | WANG Yingying, GUI Lili, LU Xuesong, LIU Huichuan, MO Tao, ZHOU Hui, JIANG Lin. Structural Deformation and Hydrocarbon Accumulation Characteristics of Baxigai Formation in Awat Area, Kuqa Depression [J]. Xinjiang Petroleum Geology, 2024, 45(6): 631-641. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||