Compared to other low-resistivity oil layers, the low-resistivity oil layers in the Lower Jurassic Badaowan formation on the southern slope of the Zhongguai bulge in the Junggar basin are characterized by early hydrocarbon accumulation, deep burial, large grain size, and low mud content, showing a unique low-resistivity genesis. Based on a comprehensive analysis on the genetic mechanisms of typical low-resistivity oil layers globally, together with the data of drilling, logging, well testing, and core analysis in the study area, the main controlling factors of the low-resistivity oil layers in the Badaowan formation were investigated from various perspectives including tectonics, sedimentation, diagenesis, reservoir characteristics, and hydrocarbon accumulation conditions. It is found that low resistivity of the oil layers in the study area is jointly controlled by macroscopic and microscopic factors. In a macroscopic setting with low tectonic amplitude and weak hydrodynamic sedimentation, low oil-water differentiation degree, high formation water salinity, and low tuff debris content are the main controlling factors for low resistivity, while low saturation of bound water is a secondary controlling factor. Accordingly, a chart illustrating the relationship between formation resistivity and oil/gas indicator coefficient was established, which matches the formation/production testing data in the study area by 92.9%. The study results provide a basis for identifying low-resistivity oil layers in the Badaowan formation on the southern slope of the Zhongguai bulge.