
新疆石油地质 ›› 2025, Vol. 46 ›› Issue (5): 630-636.doi: 10.7657/XJPG20250514
代金友(
), 雷禧桢, 沈小述, 师洋阳, 周晓峰, 张立娟
收稿日期:2024-12-31
修回日期:2025-01-27
出版日期:2025-10-01
发布日期:2025-09-30
作者简介:代金友(1975-),男,黑龙江海伦人,副教授,博士,开发地质,(Tel)010-89733992(Email)基金资助:
DAI Jinyou(
), LEI Xizhen, SHEN Xiaoshu, SHI Yangyang, ZHOU Xiaofeng, ZHANG Lijuan
Received:2024-12-31
Revised:2025-01-27
Online:2025-10-01
Published:2025-09-30
摘要: 球棍模型广泛应用于储集层孔喉网络模拟,然而,储集层孔喉尺度跨度大,且结构类型多样,球棍模型是否完全适用,缺乏有效验证。恒速压汞法是研究孔喉结构的重要方法之一。利用构型理论和层次分析方法,划分恒速压汞曲线构型,并解译构型的储集层孔喉层次结构,深入探讨储集层孔喉网络模拟中球棍模型的适用性。结果表明:恒速压汞曲线可分为A构型区和B构型区,分别对应微米级大孔和纳米级小孔;A构型区,随着进汞压力增大,孔隙、孔道和喉道的进汞饱和度均单调递增,说明大孔具有孔喉二元结构,孔道与喉道并存,孔喉比大于1,球棍模型适用;B构型区,随着进汞压力增大,孔隙和喉道的进汞饱和度单调递增,孔道进汞饱和度保持不变,说明小孔不具有孔喉二元结构,基本为喉道,孔喉比为1,球棍模型不适用,毛细管模型更适合。球棍模型与毛细管模型结合,可完整模拟储集层孔喉网络。储集层物性越差,毛细管模型越适用于孔喉网络模拟。
中图分类号:
代金友, 雷禧桢, 沈小述, 师洋阳, 周晓峰, 张立娟. 储集层孔喉网络模拟中球棍模型适用性探讨[J]. 新疆石油地质, 2025, 46(5): 630-636.
DAI Jinyou, LEI Xizhen, SHEN Xiaoshu, SHI Yangyang, ZHOU Xiaofeng, ZHANG Lijuan. Applicability of Ball-and-Stick Model in Reservoir Pore Network Simulation[J]. Xinjiang Petroleum Geology, 2025, 46(5): 630-636.
表1
研究区恒速压汞实验结果"
| 样品编号 | 井名 | 深度/m | 孔隙度/ % | 渗透率/ mD | 平均喉道 半径/μm | 平均孔隙 半径/μm | 平均孔喉 半径比 | 孔隙最大 进汞饱和度/% | 孔道最大 进汞饱和度/% | 喉道最大 进汞饱和度/% |
|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 西104井 | 2 161.1 | 14.20 | 1.220 | 1.25 | 125.90 | 153.30 | 70.29 | 39.63 | 30.66 |
| 2 | 西105井 | 2 156.0 | 12.27 | 0.828 | 0.98 | 128.40 | 180.63 | 60.78 | 37.20 | 23.58 |
| 3 | 西263井 | 2 136.6 | 9.77 | 0.331 | 0.29 | 140.68 | 534.66 | 46.11 | 28.66 | 17.44 |
表4
研究区储集层大孔与小孔采收率分量对比"
| 井名 | 孔隙度/ % | 空气 渗透率/mD | 束缚水 饱和度/% | 残余油 饱和度/% | 含水率为95% | 含水率为98% | 含水率为100% | |||
|---|---|---|---|---|---|---|---|---|---|---|
| 驱油 效率/% | 注入 倍数/PV | 驱油 效率/% | 注入 倍数/PV | 驱油 效率/% | 注入 倍数/PV | |||||
| 西105井 | 11.8 | 1.13 | 29.3 | 35.9 | 24.3 | 0.88 | 35.2 | 2.44 | 49.2 | 16.6 |
| 11.5 | 0.72 | 32.5 | 32.5 | 30.6 | 1.27 | 40.9 | 2.49 | 51.8 | 22.4 | |
| 西119井 | 14.8 | 1.56 | 27.6 | 29.1 | 30.3 | 2.58 | 44.4 | 5.10 | 59.8 | 18.6 |
| 14.6 | 1.37 | 27.8 | 25.5 | 30.5 | 2.24 | 49.3 | 4.85 | 64.7 | 25.3 | |
| [1] | 李传亮. 孔喉比对地层渗透率的影响[J]. 油气地质与采收率, 2007, 14(5):78-79. |
| LI Chuanliang. Effect of pore-throat ratio on reservoir permeability[J]. Petroleum Geology and Recovery Efficiency, 2007, 14(5):78-79. | |
| [2] | 阮壮, 徐睿, 王杰, 等. 柴达木盆地马海东地区古近系砂岩储层微观孔隙结构特征及微观致密区成因[J]. 石油与天然气地质, 2024, 45(4):1032-1045. |
| RUAN Zhuang, XU Rui, WANG Jie, et al. Micro-pore structure characteristics of the Paleogene sandstone reservoirs and genesis of microscopic tight zones in the Mahaidong area,Qaidam Basin[J]. Oil & Gas Geology, 2024, 45(4):1032-1045. | |
| [3] | 石立华, 程时清, 常毓文, 等. 致密油藏非等径毛细管微观渗吸影响因素[J]. 大庆石油地质与开发, 2023, 42(2):68-76. |
| SHI Lihua, CHENG Shiqing, CHANG Yuwen, et al. Influencing factors of non-equal-radius capillary microscopic imbibition in tight reservoir[J]. Petroleum Geology & Oilfield Development in Daqing, 2023, 42(2):68-76. | |
| [4] | 梁利平, 姬定成, 王光耀, 等. 基于毛细管的水驱剩余油模型[J]. 西北大学学报(自然科学版), 2011, 41(6):1025-1030. |
| LIANG Liping, JI Dingcheng, WANG Guangyao, et al. Remaining oil model of water flooding base on capillary[J]. Journal of Northwest University(Natural Science Edition), 2011, 41(6):1025-1030. | |
| [5] | 吴翔, 肖占山, 张永浩, 等. 多尺度数字岩石建模进展与展望[J]. 吉林大学学报(地球科学版), 2024, 54(5):1736-1751. |
| WU Xiang, XIAO Zhanshan, ZHANG Yonghao, et al. Progress and prospect of multiscale digital rock modeling[J]. Journal of Jilin University(Earth Science Edition), 2024, 54(5):1736-1751. | |
| [6] |
李俊键, 刘洋, 高亚军, 等. 微观孔喉结构非均质性对剩余油分布形态的影响[J]. 石油勘探与开发, 2018, 45(6):1043-1052.
doi: 10.11698/PED.2018.06.12 |
| LI Junjian, LIU Yang, GAO Yajun, et al. Effects of microscopic pore structure heterogeneity on the distribution and morphology of remaining oil[J]. Petroleum Exploration and Development, 2018, 45(6):1043-1052. | |
| [7] | 吴建彪, 王瑞飞, 杨川, 等. 鄂尔多斯盆地致密砂岩气藏微观孔喉球棍模型表征方法[J]. 地球物理学进展, 2023, 38(1):337-347. |
| WU Junbiao, WANG Ruifei, YANG Chuan, et al. Micro nano pore throat CT imaging ball stick model of tight sandstone gas reservoir in Ordos Basin[J]. Progress in Geophysics, 2023, 38(1):337-347. | |
| [8] | 赵文, 吴克柳, 姜林, 等. 基于孔隙网络模拟的致密砂岩气充注与微观气水赋存特征[J]. 天然气工业, 2022, 42(5):69-79. |
| ZHAO Wen, WU Keliu, JIANG Lin, et al. Charging and microscopic gas-water occurrence characteristics of tight sandstone gas based on pore network model[J]. Natural Gas Industry, 2022, 42(5):69-79. | |
| [9] | 陈铭阳, 侯亚伟, 王鹏飞, 等. 基于数字岩心的储层微观孔隙结构定量表征:以渤海蓬莱19-3油田为例[J]. 石油地质与工程, 2024, 38(3):82-89. |
| CHEN Mingyang, HOU Yawei, WANG Pengfei, et al. Quantitative characterization of reservoir micro-pore structure based on digital core:A case study of Penglai 19-3 oilfield in Bohai Sea[J]. Petroleum Geology and Engineering, 2024, 38(3):82-89. | |
| [10] | 汪贺, 师永民, 徐大卫, 等. 非常规储层孔隙结构表征技术及进展[J]. 油气地质与采收率, 2019, 26(5):21-30. |
| WANG He, SHI Yongming, XU Dawei, et al. Unconventional reservoir pore structure characterization techniques and progress[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(5):21-30. | |
| [11] | 宋亚程, 韩冬青, 庞志宇, 等. 居住型历史地段的空间构型认知与更新实施决策[J/OL]. 国际城市规划:1-16 [2024-05-07]. https://link.cnki.net/urlid/11.5583.TU.20240507.1150.003.html . |
| SONG Yacheng, HAN Dongqing, PANG Zhiyu, et al. Spatial configuration cognition and renewal implementation decision-making of residential historical districts[J/OL]. Urban Planning International:1-16 [2024-05-07]. https://link.cnki.net/urlid/11.5583.TU.20240507.1150.003.html . | |
| [12] | 朱黎明. 基于拓扑优化的钢桥结构合理构型研究[J]. 河南大学学报(自然科学版), 2019, 49(5):612-617. |
| ZHU Liming. Research on the optimal configuration of steel bridge based on topology optimization[J]. Journal of Henan University(Natural Science), 2019, 49(5):612-617. | |
| [13] | 郭其轶, 邓章豪, 金少雄. 经典构型的传承与发展:以揭阳潮汕机场航站楼改扩建设计为例[J]. 建筑技艺, 2021, 27(4):78-80. |
| GUO Qiyi, DENG Zhanghao, JIN Shaoxiong. Inheritance and development of classic configuration:Terminal renovation and expansion of Jieyang Chaoshan international airport[J]. Architecture Technique, 2021, 27(4):78-80. | |
| [14] | 王丹, 尹伟萌, 孟悦. 可重构式机械臂运动构型与关节控制系统研究[J]. 机械与电子, 2020, 38(2):53-57. |
| WANG Dan, YI Weimeng, MENG Yue. Research on motion configuration and joint control system of reconfigurable manipulator[J]. Machinery & Electronics, 2020, 38(2):53-57. | |
| [15] |
张学军, 陈冰清. 航空典型金属材料增材制造组织、缺陷、表面、构型研究进展[J]. 航空材料学报, 2024, 44(1):1-14.
doi: 10.11868/j.issn.1005-5053.2023.000230 |
|
ZHANG Xuejun, CHEN Bingqing. Research progress on microstructure,defects,surface and configuration of additive manufactured typical aviation metals[J]. Journal of Aeronautical Materials, 2024, 44(1):1-14.
doi: 10.11868/j.issn.1005-5053.2023.000230 |
|
| [16] | 任云英, 吴晓晨. 历史文化名城文脉空间单元及其构型模式初探[J]. 城市建筑, 2020, 17(25):81-83. |
| REN Yunying, WU Xiaochen. Preliminary study on the context spatial unit and its configuration mode of the famous historical and cultural cities[J]. Urbanism and Architecture, 2020, 17(25):81-83. | |
| [17] | ALLEN J R L. The plan shape of current ripples in relation to flow conditions[J]. Sedimentology, 1977, 24(1):53-62. |
| [18] | 刘金库, 胡杨, 伍燚. 苏里格气田盒8段辫状河储集层构型空间展布[J]. 新疆石油地质, 2023, 44(2):144-150. |
| LIU Jinku, HU Yang, WU Yi. Spatial distribution of architectures of braided river reservoirs in He 8 member,Sulige gas field[J]. Xinjiang Petroleum Geology, 2023, 44(2):144-150. | |
| [19] |
周恒, 马世忠, 何宇, 等. 苏里格盒8下段砂质辫状河心滩构型模式及剩余气分布规律[J]. 特种油气藏, 2023, 30(5):18-27.
doi: 10.3969/j.issn.1006-6535.2023.05.003 |
| ZHOU Heng, MA Shizhong, HE Yu, et al. Architecture model of sandy braided river island in the lower He8 member of Sulige and residual gas distribution rule[J]. Special Oil & Gas Reservoirs, 2023, 30(5):18-27. | |
| [20] | 孙以德, 刘常妮, 李浩男, 等. 基于密井网和井间示踪剂资料的浅水三角洲单砂体沉积构型研究:以东营凹陷胜坨油田二区沙二段1-2砂组为例[J]. 油气地质与采收率, 2024, 31(2):39-47. |
| SUN Yide, LIU Changni, LI Haonan, et al. Study on sedimentary architecture of single sand body in shallow water deltas based on dense well pattern and interwell tracer data:A case study of Es21 and Es22 in Shenger district of Shengtuo oilfield,Dongying sag[J]. Petroleum Geology and Recovery Efficiency, 2024, 31(2):39-47. | |
| [21] | 涂乙, 戴建文, 杨娇, 等. 番禺油田群稠油油藏储集层构型特征及剩余油挖潜[J]. 新疆石油地质, 2024, 45(2):189-198. |
| TU Yi, DAI Jianwen, YANG Jiao, et al. Architectures of and remaining oil potential tapping in heavy oil reservoirs of Panyu oilfield group[J]. Xinjiang Petroleum Geology, 2024, 45(2):189-198. | |
| [22] | 王静, 郗兆栋, 陆冬华. 基于恒速压汞技术研究页岩气储层孔隙结构:以湘西北地区五峰组页岩为例[J]. 地质与勘探, 2021, 57(2):450-456. |
| WANG Jing, XI Zhaodong, LU Donghua. Pore structure of shale gas reservoirs revealed by constant-speed mercury injection experiments:A case study of Wufeng formation shale from northwestern Hunan province[J]. Geology and Exploration, 2021, 57(2):450-456. | |
| [23] | 代金友, 雷禧桢, 皮莎, 等. 常规压汞-恒速压汞联合曲线构型模式及其指示意义[J]. 新疆石油地质, 2024, 45(6):735-741. |
| DAI Jinyou, LEI Xizhen, PI Sha, et al. Configuration pattern of combined conventional mercury intrusion-constant rate mercury intrusion curves and its indicative significance[J]. Xinjiang Petroleum Geology, 2024, 45(6):735-741. | |
| [24] | 代金友, 李建霆, 任茜莹, 等. 西峰油田长8 低渗致密储层微观特征[J]. 科学技术与工程, 2019, 19(16):118-125. |
| DAI Jinyou, LI Jianting, REN Qianying, et al. Microscopic characteristics of Chang 8 low permeability tight reservoir in Xifeng oilfield[J]. Science Technology and Engineering, 2019, 19(16):118-125. | |
| [25] | WANG Sen, JAVADPOUR F, FENG Qihong. Confinement correction to mercury intrusion capillary pressure of shale nanopores[J]. Scientific Reports, 2016, 6(10):1-12. |
| [26] | 代金友, 林立新. 储层孔隙的“渗流”分类方案及其意义[J]. 大庆石油地质与开发, 2022, 41(2):43-50. |
| DAI Jinyou, LIN Lixin. “Seepage” classification scheme of reservoir pores and its significance[J]. Petroleum Geology & Oilfield Development in Daqing, 2022, 41(2):43-50. | |
| [27] | 吴元燕, 吴胜和, 蔡正旗, 等. 油矿地质学[M]. 4版. 北京: 石油工业出版社, 2011. |
| WU Yuanyan, WU Shenghe, CAI Zhengqi, et al. Oilfield geology[M]. 4th ed. Beijing: Petroleum Industry Press, 2011:195-197. | |
| [28] | 吴胜和. 储层表征与建模[M]. 北京: 石油工业出版社, 2010. |
| WU Shenghe. Reservoir characterization and modeling[M]. Beijing: Petroleum Industry Press, 2010. | |
| [29] | 杨胜来, 魏俊之. 油层物理学[M]. 北京: 石油工业出版社, 2004. |
| YANG Shenglai, WEI Junzhi. Fundamentals of petrophysics[M]. Beijing: Petroleum Industry Press, 2004. |
| [1] | 李素华, 卢齐军, 胡昊, 李蓉, 苏成鹏, 蒋能春. 四川盆地西南部井研地区二叠系茅口组断溶体识别[J]. 新疆石油地质, 2025, 46(5): 544-552. |
| [2] | 李重月, 徐文圣, 韩富强, 杨焱, 周浪, 张虎, 余冰悦. 和田河气田玛4区块奥陶系岩溶储集层特征及其对产能的影响[J]. 新疆石油地质, 2025, 46(5): 553-559. |
| [3] | 吴勃翰, 李芳, 汤翟, 吴一雄, 骆玉虎, 肖大志, 张顺超. 基于双驱动模型的低渗气藏测井渗透率预测方法——以莺歌海盆地东方气田为例[J]. 新疆石油地质, 2025, 46(5): 622-629. |
| [4] | 李宗杰, 李弘艳, 杨威, 龚伟, 高利君. 顺北油气田五维地震裂缝预测[J]. 新疆石油地质, 2025, 46(4): 403-409. |
| [5] | 张正涛, 费世祥, 罗文琴, 钟广浩, 兰天君, 王晔, 崔越华, 汪淑洁, 张芳. 鄂尔多斯盆地东部本溪组煤岩气储集层评价及甜点区优选[J]. 新疆石油地质, 2025, 46(3): 263-272. |
| [6] | 马志欣, 李进步, 付斌, 白慧, 李浮萍, 马生晖, 贾金娥. 苏里格气田二叠系山西组曲流河储集层岩相与构型[J]. 新疆石油地质, 2025, 46(3): 280-287. |
| [7] | 杨龙, 康永梅, 包琛龙, 刘一婷, 何辉, 朱玉双. 演武油田延安组储集层特征及敏感性主控因素[J]. 新疆石油地质, 2025, 46(3): 288-295. |
| [8] | 曹江骏, 张道锋, 王继平, 周游, 李笑天, 李娅, 范倩倩, 董倩云. 庆阳气田山1段差异性成岩作用及其对储集层的影响[J]. 新疆石油地质, 2025, 46(3): 296-307. |
| [9] | 段文标, 张永强, 高春宁, 张洁, 王靖华, 周晋, 张传保, 曾山. 安塞油田长6段特低渗油藏水驱特征[J]. 新疆石油地质, 2025, 46(3): 353-359. |
| [10] | 陈霖, 许倩雯, 陈坤, 陈小东, 刘文, 文林, 刘斌. 超低渗储集层水驱驱替界限表征方法[J]. 新疆石油地质, 2025, 46(3): 388-394. |
| [11] | 王雯清, 彭磊, 石华强, 侯瑞, 高辉, 王琛, 李腾. 鄂尔多斯盆地北部与西南部地区二叠系山1段可动流体差异分析[J]. 新疆石油地质, 2025, 46(2): 172-180. |
| [12] | 杨旺旺, 王振林, 苏静, 胡旋, 黄玉越, 赖锦, 王贵文. 玛湖凹陷风城组页岩油赋存空间特征及可动性影响因素[J]. 新疆石油地质, 2025, 46(2): 192-200. |
| [13] | 张朝良, 李钧, 晏晓龙, 吕建荣, 张德富, 窦萍. 砾岩储集层岩石矿物组成及其结构对聚合物表面活性剂二元复合驱提高采收率的影响[J]. 新疆石油地质, 2025, 46(2): 231-239. |
| [14] | 慕倩, 李高仁, 张文静, 迟瑞强. 基于核磁共振测井的致密砂岩储集层有效性评价[J]. 新疆石油地质, 2025, 46(1): 121-126. |
| [15] | 牛君, 王聪, 梁飞. 绿泥石与浊沸石矿物特征及其对储集层物性的影响——以准噶尔盆地陆梁隆起西部下乌尔禾组为例[J]. 新疆石油地质, 2025, 46(1): 13-21. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||