[1] |
刘军, 李伟, 龚伟, 等. 顺北地区超深断控储集体地震识别与描述[J]. 新疆石油地质, 2021, 42(2):238-245.
|
|
LIU Jun, LI Wei, GONG Wei, et al. Seismic identification and description of ultra-deep fault-controlled reservoirs in Shunbei area[J]. Xinjiang Petroleum Geology, 2021, 42(2):238-245.
|
[2] |
张煜, 李海英, 陈修平, 等. 塔里木盆地顺北地区超深断控缝洞型油气藏地质-工程一体化实践与成效[J]. 石油与天然气地质, 2022, 43(6):1466-1 480.
|
|
ZHANG Yu, LI Haiying, CHEN Xiuping, et al. Practice and effect of geology-engineering integration in the development of ultra-deep fault-controlled fractured-vuggy oil/gas reservoirs,Shunbei area,Tarim basin[J]. Oil & Gas Geology, 2022, 43(6):1466-1 480.
|
[3] |
江同文, 昌伦杰, 邓兴梁, 等. 断控碳酸盐岩油气藏开发地质认识与评价技术:以塔里木盆地为例[J]. 天然气工业, 2021, 41(3):1-9.
|
|
JIANG Tongwen, CHANG Lunjie, DENG Xingliang, et al. Geological understanding and evaluation technology of fault controlled carbonate reservoir development:A case study of the Tarim basin[J]. Natural Gas Industry, 2021, 41(3):1-9.
|
[4] |
杨威, 周刚, 李海英, 等. 碳酸盐岩深层走滑断裂成像技术[J]. 新疆石油地质, 2021, 42(2):246-252.
|
|
YANG Wei, ZHOU Gang, LI Haiying, et al. Seismic imaging technology for deep strike-slip faults in carbonate reservoirs[J]. Xinjiang Petroleum Geology, 2021, 42(2):246-252.
|
[5] |
田军, 杨海军, 朱永峰, 等. 塔里木盆地富满油田成藏地质条件及勘探开发关键技术[J]. 石油学报, 2021, 42(8):971-985.
doi: 10.7623/syxb202108001
|
|
TIAN Jun, YANG Haijun, ZHU Yongfeng, et al. Geological conditions for hydrocarbon accumulation and key technologies for exploration and development in Fuman oilfield,Tarim basin[J]. Acta Petrolei Sinica, 2021, 42(8):971-985.
|
[6] |
吕海涛, 韩俊, 张继标, 等. 塔里木盆地顺北地区超深碳酸盐岩断溶体发育特征与形成机制[J]. 石油实验地质, 2021, 43(1):14-22.
|
|
LÜ Haitao, HAN Jun, ZHANG Jibiao, et al. Development characteristics and formation mechanism of ultra-deep carbonate fault-dissolution body in Shunbei area,Tarim basin[J]. Petroleum Geology & Experiment, 2021, 43(1):14-22.
|
[7] |
王清华, 杨海军, 汪如军, 等. 塔里木盆地超深层走滑断裂断控大油气田的勘探发现与技术创新[J]. 中国石油勘探, 2021, 26(4):58-71.
|
|
WANG Qinghua, YANG Haijun, WANG Rujun, et al. Discovery and exploration technology of fault-controlled large oil and gas fields of ultra-deep formation in strike slip fault zone in Tarim basin[J]. China Petroleum Exploration, 2021, 26(4):58-71.
|
[8] |
李宗宇. 塔河缝洞型碳酸盐岩油藏油水界面变化规律探讨[J]. 石油地质与工程, 2010, 24(2):79-81.
|
|
LI Zongyu. Discussion on oil-water contact variance of fracture-cavity carbonate rock reservoir of Tahe[J]. Petroleum Geology and Engineering, 2010, 24(2):79-81.
|
[9] |
陈青, 方小娟, 余勤, 等. 缝洞型碳酸盐岩油藏原始油水界面的分布评价:以塔河油田4区为例[J]. 特种油气藏, 2010, 17(6):78-81.
|
|
CHEN Qing, FANG Xiaojuan, YU Qin, et al. Evaluation of original oil-water interface distribution in fracture-cavern carbonate reservoirs:A case study with Tahe oilfield[J]. Special Oil & Gas Reservoirs, 2010, 17(6):78-81.
|
[10] |
闫晓芳, 邹伟宏, 陈戈, 等. 碳酸盐岩缝洞型油藏油水界面计算方法:以塔里木油田轮古15区块为例[J]. 石油地质与工程, 2012, 26(5):67-69.
|
|
YAN Xiaofang, ZOU Weihong, CHEN Ge, et al. Calculation method of oil-water interface of fracture-cavern carbonate reservoirs:A case study with the 15th area of Lungu in Tarim oilfield[J]. Petroleum Geology and Engineering, 2012, 26(5):67-69.
|
[11] |
严科, 赵红兵. 断背斜油藏油水界面的差异分布及成因探讨[J]. 西南石油大学学报(自然科学版), 2013, 35(1):28-34.
|
|
YAN Ke, ZHAO Hongbing. Discussion on the differential distribution of WOC and its mechanism in the faulted anticline reservoir[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2013, 35(1):28-34.
|
[12] |
练章贵, 卞万江, 韩涛, 等. 哈得4CⅢ油藏隔夹层控制倾斜油水界面成因数值模拟[J]. 新疆石油地质, 2022, 43(2):177-182.
|
|
LIAN Zhanggui, BIAN Wanjiang, HAN Tao, et al. Numerical simulation on tilted OWC controlled by interlayers in Hade 4CⅢ reservoir[J]. Xinjiang Petroleum Geology, 2022, 43(2):177-182.
|
[13] |
贾品, 王远征, 尚根华, 等. 基于物质平衡方程的断溶体油藏动态油水界面预测新模型[J]. 中国石油大学学报(自然科学版), 2022, 46(1):120-128.
|
|
JIA Pin, WANG Yuanzheng, SHANG Genhua, et al. A new model and its application for predicting dynamic oil-water interface in fault-solution reservoirs based on material balance equation[J]. Journal of China University of Petroleum(Edition of Natural Science), 2022, 46(1):120-128.
|
[14] |
宁方兴. 济阳坳陷地层油气藏油柱高度主控因素及定量计算[J]. 油气地质与采收率, 2008, 15(3):9-11.
|
|
NING Fangxing. Main controlling factors and quantitative calculation of oil column height of the stratigraphic hydrocarbon reservoirs in Jiyang depression[J]. Petroleum Geology and Recovery Efficiency, 2008, 15(3):9-11.
|
[15] |
顾浩, 尚根华, 李慧莉, 等. 基于井温的超深断溶体油藏油井动用深度计算[J]. 特种油气藏, 2021, 28(2):57-62.
doi: 10.3969/j.issn.1006-6535.2021.02.008
|
|
GU Hao, SHANG Genhua, LI Huili, et al. Calculation of production depth of oil wells in ultra-deep fault-karst reservoirs based on well temperature[J]. Special Oil & Gas Reservoirs, 2021, 28(2):57-62.
|
[16] |
连建文, 马剑坤, 王仕莉, 等. 顺北断控碳酸盐岩油藏油柱高度的计算方法研究[J]. 重庆科技学院学报(自然科学版), 2020, 22(3):36-40.
|
|
LIAN Jianwen, MA Jiankun, WANG Shili, et al. Study on the method of oil column height in the control of carbonate reservoirs in Shunbei oilfield[J]. Journal of Chongqing University of Science and Technology(Natural Sciences Edition), 2020, 22(3):36-40.
|
[17] |
李红波, 王翠丽, 牛阁, 等. 有封闭水体的缝洞型油藏动态储量评价:以塔里木盆地哈拉哈塘油田为例[J]. 新疆石油地质, 2020, 41(3):321-325.
|
|
LI Hongbo, WANG Cuili, NIU Ge, et al. Dynamic reserves evaluation of fractured-cavity reservoirs with closed water:A case from Halahatang oilfield,Tarim basin[J]. Xinjiang Petroleum Geology, 2020, 41(3):321-325.
|
[18] |
巫波, 杨文东, 姜应兵, 等. 利用注水替油资料计算塔河缝洞型油藏动态储量的方法[J]. 大庆石油地质与开发, 2022, 41(2):59-66.
|
|
WU Bo, YANG Wendong, JIANG Yingbing, et al. Calculating method of the dynamic reserves by water injecting and oil flooding data for the fractured vuggy oil reservoirs in Tahe oilfield[J]. Petroleum Geology & Oilfield Development in Daqing, 2022, 41(2):59-66.
|
[19] |
陈利新, 王连山, 高春海, 等. 缝洞型油藏动态储量计算的一种新方法:以塔里木盆地哈拉哈塘油田为例[J]. 新疆石油地质, 2016, 37(3):356-359.
|
|
CHEN Lixin, WANG Lianshan, GAO Chunhai, et al. A new method to calculate dynamic reserves in fractured-vuggy reservoirs:A case from Halahatang oilfield,Tarim basin[J]. Xinjiang Petroleum Geology, 2016, 37(3):356-359.
|
[20] |
周德华, 葛家理. 应用等值渗流阻力法建立面积井网水平井产能方程[J]. 石油实验地质, 2004, 26(6):594-596.
|
|
ZHOU Dehua, GE Jiali. Producibility equations of horizontal wells in areal well spacing set up by the equivalent flowing resistance method[J]. Petroleum Geology & Experiment, 2004, 26(6):594-596.
|