[1] |
杨学文, 田军, 王清华, 等. 塔里木盆地超深层油气地质认识与有利勘探领[J]. 中国石油勘探, 2021, 26(4):17-28.
|
|
YANG Xuewen, TIAN Jun, WANG Qinghua, et al. Geological understanding and favorable exploration fields of ultra-deep formations in Tarim basin[J]. China Petroleum Exploration, 2021, 26(4):17-28.
|
[2] |
田军, 杨海军, 朱永峰, 等. 塔里木盆地富满油田成藏地质条件及勘探开发关键技术[J]. 石油学报, 2021, 42(8):971-985.
doi: 10.7623/syxb202108001
|
|
TIAN Jun, YANG Haijun, ZHU Yongfeng, et al. Geological conditions for hydrocarbon accumulation and key technologies for exploration and development in Fuman oilfield,Tarim basin[J]. Acta Petrolei Sinica, 2021, 42(8):971-985.
|
[3] |
何治亮, 马永生, 朱东亚, 等. 深层-超深层碳酸盐岩储层理论技术进展与攻关方向[J]. 石油与天然气地质, 2021, 42(3):533-546.
|
|
HE Zhiliang, MA Yongsheng, ZHU Dongya, et al. Theoretical and technological progress and research direction of deep and ultra-deep carbonate reservoirs[J]. Oil & Gas Geology, 2021, 42(3):533-546.
|
[4] |
李静, 刘晨, 刘惠民, 等. 复杂断层构造区地应力分布规律及其影响因素[J]. 中国矿业大学学报, 2021, 50(1):123-137.
|
|
LI Jing, LIU Chen, LIU Huimin, et al. Distribution and influencing factors of in-situ stress in complex fault tectonic region[J]. Journal of China University of Mining & Technology, 2021, 50(1):123-137.
|
[5] |
WILSON M, LEWIS D, YOGI O, et al. Development of a Papua New Guinean onshore carbonate reservoir:A comparative borehole image (FMI) and petrographic evaluation[J]. Marine and Petroleum Geology, 2013,44:164-195.
|
[6] |
XAVIER A, GUERRA C E, ANDRADE A. Fracture analysis in borehole acoustic images using mathematical morphology[J]. Journal of Geophysics and Engineering, 2015, 12(3):492-501.
|
[7] |
李小波, 魏学刚, 刘学利, 等. 顺北油田超深断控缝洞型油藏注水开发实践[J]. 新疆石油地质, 2023, 44(6):702-710.
|
|
LI Xiaobo, WEI Xuegang, LIU Xueli, et al. Practice of water injection development in ultra-deep fault-controlled fractured-vuggy reservoirs in Shunbei oilfield[J]. Xinjiang Petroleum Geology, 2023, 44(6):702-710.
|
[8] |
荣元帅, 李新华, 刘学利, 等. 塔河油田碳酸盐岩缝洞型油藏多井缝洞单元注水开发模式[J]. 油气地质与采收率, 2013, 20(2):58-61.
|
|
RONG Yuanshuai, LI Xinhua, LIU Xueli, et al. Discussion about pattern of water flooding development in multi-well fracture-cavity units of carbonate fracture-cavity reservoir in Tahe oilfield[J]. Petroleum Geology and Recovery Efficiency, 2013, 20(2):58-61.
|
[9] |
HOU Jirui, LI Haibo, YU Jiang, et al. Macroscopic three-dimensional physical simulation of water flooding in multi-well fracture-cavity unit[J]. Petroleum Exploration and Development, 2014, 41(6):784-789.
|
[10] |
LI Yilong, WU Feng, LI Xiaoping, et al. Experimental study on waterflood development in large-scale karst structures[J]. Journal of Petroleum Science and Engineering, 2019,175:838-851.
|
[11] |
ZHAO Yulong, LU Guang, ZHANG Leihui, et al. Physical simulation of waterflooding development in large-scale fractured-vuggy reservoir considering filling characteristics[J]. Journal of Petroleum Science and Engineering, 2020,191:107328.
|
[12] |
JÄGER W, MIKELIC A. On the interface boundary condition of Beavers,Joseph,and Saffman[J]. SIAM Journal on Applied Mathematics, 2000, 60(4):1111-1127.
|
[13] |
GIRAULT V, RIVIÈRE B. DG approximation of coupled Navier-Stokes and Darcy equations by Beaver-Joseph-Saffman interface condition[J]. Siam Journal on Numerical Analysis, 2009, 47(3):2052-2089.
|
[14] |
黄朝琴, 高博, 姚军. Stokes-Darcy耦合流动问题的交界面条件研究[J]. 中国科学:物理学力学天文学, 2014, 44(2):212-220.
|
|
HUANG Zhaoqin, GAO Bo, YAO Jun. On the interface boundary conditions for the Stokes-Darcy coupling problem[J]. Scientia Sinica Physica,Mechanica & Astronomica, 2014, 44(2):212-220.
|
[15] |
CAMAÑO J, GATICA N G, OYARZÚA R, et al. New fully-mixed finite element methods for the Stokes-Darcy coupling[J]. Computer Methods in Applied Mechanics and Engineering, 2015,295:362-395.
|
[16] |
LIU Xin, LI Rui, CHEN Zhangxin. A virtual element method for the coupled Stokes-Darcy problem with the Beaver-Joseph-Saffman interface condition[J]. Calcolo, 2019, 56(4):48.
|
[17] |
HAN Dazhi, HE Xiaoming, WANG Quan, et al. Existence and weak-strong uniqueness of solutions to the Cahn-Hilliard-Navier-Stokes-Darcy system in superposed free flow and porous media[J]. Nonlinear Analysis, 2021,211:112411.
|
[18] |
LIU Lijun, HUANG Zhaoqin, YAO Jun, et al. Simulating two-phase flow and geomechanical deformation in fractured karst reservoirs based on a coupled hydro-mechanical model[J]. International Journal of Rock Mechanics and Mining Sciences, 2021,137:104543.
|
[19] |
LIU Shun, ZHANG Yalong, DU Hengyi, et al. Experimental study on fluid flow behaviors of waterflooding fractured-vuggy oil reservoir using two-dimensional visual model[J]. Physics of Fluids, 2023, 35(6):062106.
|
[20] |
WANG Jing, LIU Huiqing, NING Zhengfu, et al. Experiments on water flooding in fractured-vuggy cells in fractured-vuggy reservoirs[J]. Petroleum Exploration and Development, 2014, 41(1):74-81.
|
[21] |
王雷, 窦之林, 林涛, 等. 缝洞型油藏注水驱油可视化物理模拟研究[J]. 西南石油大学学报(自然科学版), 2011, 33(2):121-124.
|
|
WANG Lei, DOU Zhilin, LIN Tao, et al. Study on the visual modeling of water flooding in carbonate fracture-cavity reservoir[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2011, 33(2):121-124.
|
[22] |
顾浩, 康志江, 尚根华, 等. 超深层断控缝洞型油藏油井合理产能优化方法及应用[J]. 新疆石油地质, 2023, 44(1):64-69.
|
|
GU Hao, KANG Zhijiang, SHANG Genhua, et al. Reasonable productivity optimization methods and application in ultra-deep fault-controlled fractured-vuggy reservoirs[J]. Xinjiang Petroleum Geology, 2023, 44(1):64-69.
|
[23] |
刘礼军. 缝洞型碳酸盐岩油气藏流固耦合数值模拟研究[D]. 山东青岛: 中国石油大学(华东), 2021.
|
|
LIU Lijun. Numerical simulation of coupled flow and geomechanical process in fractured karst carbonate reservoirs[D]. Qingdao, Shandong: China University of Petroleum(East China), 2021.
|
[24] |
刘承婷, 刘钢, 李家丞, 等. 基于Fluent与Hernandez模型的缝洞型油藏水驱油机理及影响因素分析[J]. 南京理工大学学报, 2019, 43(3):367-372.
|
|
LIU Chengting, LIU Gang, LI Jiacheng, et al. Analysis of mechanism and influential factors of water-driven-oil in fractured-vuggyreservoirs based on Fluent and Hernandez[J]. Journal of Nanjing University of Science and Technology, 2019, 43(3):367-372.
|
[25] |
陈海波. 流固耦合作用下粗糙裂隙岩体渗流及滑移失稳机理研究[D]. 太原: 太原理工大学, 2023.
|
|
CHEN Haibo. Study on seepage and slip instability mechanism of rough fractured rock mass under the action of fluid-deformation coupling[D]. Taiyuan: Taiyuan University of Technology, 2023.
|
[26] |
张英. 水-力耦合作用下裂隙岩体渗流规律与突水机理研究[D]. 北京: 北京科技大学, 2020.
|
|
ZHANG Ying. Study on the seepage regularity and water inrush mechanism of fracture rock mass under coupling action of stress field and hydraulic force[D]. Beijing: University of Science and Technology Beijing, 2020.
|