Xinjiang Petroleum Geology ›› 2020, Vol. 41 ›› Issue (4): 499-504.doi: 10.7657/XJPG20200417
• REVIEW • Previous Articles
ZHAO Zhihenga(), ZHENG Youchengb, FAN Yua, SONG Yia, GUO Xingwua
Received:
2019-12-06
Revised:
2020-01-31
Online:
2020-08-01
Published:
2020-08-05
CLC Number:
ZHAO Zhiheng, ZHENG Youcheng, FAN Yu, SONG Yi, GUO Xingwu. Application and Cognition of Multi-Cluster Fracturing Technology in Horizontal Wells in Shale Reservoirs[J]. Xinjiang Petroleum Geology, 2020, 41(4): 499-504.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Comparison of reservoir geological parameters in southern Sichuan and North America"
页岩气区块 | 埋深/m | 总有机碳含量/% | 孔隙度/% | 脆性矿物含量/% | 压力系数 | 水平应力差/MPa | 地层温度/℃ |
---|---|---|---|---|---|---|---|
川南页岩气区块 | 2 000~4 500 | 2.5~4.8 | 3.4~7.9 | 50~80 | 1.2~2.1 | 9~20 | 70~145 |
Haynesville 页岩气区块 | 3 000~4 700 | 2.0~7.0 | 5.0~11.0 | 65~75 | 1.6~2.1 | 3~6 | 149~177 |
Eagle Ford 页岩气区块 | 1 300~3 600 | 2.0~6.5 | 3.4~14.6 | 67~87 | 1.3~2.0 | 68~168 | |
Duvernay 页岩气区块 | 3 000~4 200 | 2.0~6.0 | 3.0~6.0 | >40 | 1.8~2.1 | >100 |
[1] |
蒋裕强, 董大忠, 漆麟, 等. 页岩气储层的基本特征及其评价[J]. 天然气工业, 2010,30(10):7-12.
doi: 10.3787/j.issn.10000976.2010.10.002 |
JIANG Yuqiang, DONG Dazhong, QI Lin, et al. Basic features and evaluation of shale gas reservoirs[J]. Natural Gas Industry, 2010,30(10):7-12. | |
[2] | CURTIS J B. Fractured shale-gas systems[J]. AAPG Bulletin, 2002,86(11):1 921-1 938. |
[3] | 刘欢, 尹俊禄, 王博涛. 水平井体积压裂簇间距优化方法[J]. 天然气勘探与开发, 2017,40(2):63-68. |
LIU Huan, YIN Junlu, WANG Botao. Optimization of cluster spacing in horizontal well volume fracturing[J]. Natural Gas Exploration and Development, 2017,40(2):63-68. | |
[4] | 吴奇, 胥云, 刘玉章, 等. 美国页岩气体积改造技术现状及对我国的启示[J]. 石油钻采工艺, 2011,33(2):1-7. |
WU Qi, XU Yun, LIU Yuzhang, et al. The current situation of stimulated reservoir volume for shale in U.S. and its inspiration to China[J]. Oil Drilling & Production Technology, 2011,33(2):1-7. | |
[5] | 任龙, 苏玉亮, 鲁明晶, 等. 超低渗油藏分段多簇压裂水平井裂缝参数优化[J]. 西安石油大学学报(自然科学版), 2015,30(4):49-52. |
REN Long, SU Yuliang, LU Mingjing, et al. Optimization of fracture parameters of segmented multi-cluster fracturing horizontal wells in unltra-low permeability reservoirs[J]. Journal of Xi’an Shiyou University(Natural Science Edition), 2015,30(4):49-52. | |
[6] | 吴奇, 胥云, 王晓泉, 等. 非常规油气藏体积改造技术:内涵、优化设计与实现[J]. 石油勘探与开发, 2012,39(3):352-358. |
WU Qi, XU Yun, WANG Xiaoquan, et al. Volume fracturing technology of unconventional reservoirs:connotation,optimization design and implementation[J]. Petroleum Exploration and Development, 2012,39(3):352-358. | |
[7] | 王天驹, 陈赞, 王蕊, 等. 致密砂岩油藏体积压裂簇间距优化新方法[J]. 新疆石油地质, 2019,40(3):351-356. |
WANG Tianju, CHEN Zan, WANG Rui, et al. A new method for cluster spacing optimization during volumetric fracturing in tight sandstone oil reservoirs[J]. Xinjiang Petroleum Geology, 2019,40(3):351-356. | |
[8] | SHELLEY R, SHAH K, UNDERWOOD K, et al. Utica well performance evaluation:a multi-well pad case history[J]. SPE 181400-MS, 2016. |
[9] | YUYI J, DONAHOE T, VANGILDER C, et al. Influencing fracture growth with stage sequencing[J]. SPE 184057-MS, 2016. |
[10] | JARIPATKE O A, BARMAN I, NDUNGU J G, et al. Review of Permian completion designs and results[J]. SPE 191560-MS, 2018. |
[11] | ALIMAHOMED F, MALPANI R, JOSE R, et al. Stacked pay pad development in the Midland basin[J]. SPE 187496-MS, 2017. |
[12] | 范宇, 周小金, 曾波, 等. 密切割分段压裂工艺在深层页岩气Zi2井的应用[J]. 新疆石油地质, 2019,40(2):223-227. |
FAN Yu, ZHOU Xiaojin, ZENG Bo, et al. Application of intensive staged fracturing technology in deep shale gas Well Zi-2[J]. Xinjiang Petroleum Geology, 2019,40(2):223-227. | |
[13] | MODELAND N, BULLER D, CHONG K K. Statistical analysis of the effect of completion methodology on production in the Haynesville shale[R]. SPE 144120, 2011. |
[14] | CHENG Y. Impacts of the number of perforation clusters and cluster spacing on production performance of horizontal shale-gas wells[R]. SPE 138843, 2012. |
[15] | 胥云, 雷群, 陈铭, 等. 体积改造技术理论研究进展与发展方向[J]. 石油勘探与开发, 2018,45(5):874-887. |
XU Yun, LEI Qun, CHEN Ming, et al. Progress and development of volume stimulation techniques[J]. Petroleum Exploration and Development, 2018,45(5):874-887. | |
[16] | CADOTTE R J, WHITSETT A, SORRELL M, et al. Modern completion optimization in the Haynesville shale[R]. SPE 187315-MS, 2017. |
[17] | JOHNSTON B, VOLKMER N. Predicting success in the Haynesville shale:a geologic,completion,and production analysis[R]. URTeC 2902880, 2018. |
[18] | RICHTER K M. Midland basin Wolfcamp shale:completions observations and lateral length optimization[R]. URTeC 2665631, 2017. |
[19] | BARRAZA J, CAPDEROU C, JONES M C, et al. Increased cluster efficiency and fracture network complexity using degradable diverter particulates to increase production:Permian basin Wolfcamp shale case study[R]. SPE 187218-MS, 2017. |
[20] | EVANS S, SIDDIQUI S, MAGNESS J. Impact of cluster spacing on infill completions in the Eagle Ford[R]. URTeC 2899323, 2018. |
[21] | EVANS S, HOLLEY E, DAWSON K, et al. Eagle Ford case history:evaluation of diversion techniques to increase stimulation effectiveness[R]. URTeC 2459883, 2016. |
[22] | RODIONOV Y, DEFEU C, GAKHAR K, et al. Optimization of infill well development using a novel far-field diversion technique in the Eagle Ford shale[R]. URTeC 2670497, 2017. |
[23] | LING Kegang, WU Xingru, HAN Guoqing, et al. Optimising the multistage fracturing interval for horizontal wells in Bakken and Three Forks formations[R]. SPE 181788-MS, 2016. |
[24] | VANDOMELEN M S. A practical guide to modern diversion technology[R]. SPE 185120-MS, 2017. |
[25] | WEDDLE P, GRIFFIN L, PEARSON C M. Mining the Bakken Ⅱ:pushing the envelope with extreme limited entry perforating[R]. SPE 189880-MS, 2018. |
[26] | THOMSON J, ZASLAVSKY G, LESHCHYSHYN T, et al. Completion design production case study in the Duvernay shale formation[R]. SPE 181715-MS, 2016. |
[27] | 马新华. 四川盆地南部页岩气富集规律与规模有效开发探索[J]. 天然气工业, 2018,38(10):1-10. |
MA Xinhua. Enrichment laws and scale effective development of shale gas in the southern Sichuan basin[J]. Natural Gas Industry, 2018,38(10):1-10. | |
[28] | 邹才能, 董大忠, 王玉满, 等. 中国页岩气特征、挑战及前景(一)[J]. 石油勘探与开发, 2015,42(6):689-701. |
ZOU Caineng, DONG Dazhong, WANG Yuman, et al. Shale gas in China:characteristics,challenges and prospects(Ⅰ)[J]. Petroleum Exploration and Development, 2015,42(6):689-701. | |
[29] | 田兴旺, 胡国艺, 苏桂萍, 等. 川南威远地区W201井古生界海相页岩矿物特征[J]. 新疆石油地质, 2018,39(4):409-415. |
TIAN Xingwang, HU Guoyi, SU Guiping, et al. Mineralogical characteristics of Paleozoic marine shales in Well W201 of Weiyuan area,southern Sichuan basin[J]. Xinjiang Petroleum Geology, 2018,39(4):409-415. | |
[30] | 陈朝伟, 石林, 项德贵. 长宁—威远页岩气示范区套管变形机理及对策[J]. 天然气工业, 2016,36(11):70-75. |
CHEN Chaowei, SHI Lin, XIANG Degui. Mechanism of casing deformation in the Changning-Weiyuan national shale gas project demonstration area and countermeasures[J]. Natural Gas Industry, 2016,36(11):70-75. | |
[31] | 高东伟. 页岩气水平井压裂细分段密分簇优化设计及应用[J]. 长江大学学报(自然科学版), 2019,16(4):40-43. |
GAO Dongwei. Optimum design and application of fine segmentation and dense clustering for fracturing in shale gas horizontal wells[J]. Journal of Yangtze University(Natural Science Edition), 2019,16(4):40-43. | |
[32] | 高东伟. 涪陵页岩气田焦石坝区块压裂试气工艺技术综述[J]. 油气井测试, 2017,26(2):50-53. |
GAO Dongwei. Review of fracturing testing technology at Coke Dam blocks in Fuling shale gas field[J]. Well Testing, 2017,26(2):50-53. | |
[33] | 谢军. 长宁—威远国家级页岩气示范区建设实践与成效[J]. 天然气工业, 2018,38(2):1-7. |
XIE Jun. Practices and achievements of the Changning-Weiyuan shale gas national demonstration project construction[J]. Natural Gas Industry, 2018,38(2):1-7. | |
[34] | 蒲泊伶, 董大忠, 耳闯, 等. 川南地区龙马溪组页岩有利储层发育特征及其影响因素[J]. 天然气工业, 2013,33(12):41-47. |
PU Boling, DONG Dazhong, ER Chuang, et al. Favorable reservoir characteristics of the Longmaxi shale in the southern Sichuan basin and their influencing factors[J]. Natural Gas Industry, 2013,33(12):41-47. | |
[35] | MILLER G, LINDSAY G, BAIHLY J, et al. Parent well refracturing:economic safety nets in an uneconomic market[R]. SPE 180200-MS,2016, 2016. |
[1] | YU Peirong, ZHENG Guoqing, SUN Futai, WANG Zhenlin. Simulation on Fracture Propagation During Hydraulic Fracturing in Horizontal Wells in Shale Reservoirs of Fengcheng Formation,Mahu Sag [J]. Xinjiang Petroleum Geology, 2022, 43(6): 750-756. |
[2] | SONG Junqiang, LI Xiaoshan, WANG Shuo, GU Kaifang, PAN Hong, WANG Xin. Production Prediction of Fractured Horizontal Wells in Tight Oil Reservoirs [J]. Xinjiang Petroleum Geology, 2022, 43(5): 580-586. |
[3] | WANG Fei, WU Baocheng, LIAO Kai, SHI Shanzhi, ZHANG Shicheng, LI Jianmin, SUO Jielin. Inversion of Fracture Parameters and Formation Pressure for Fractured Horizontal Wells in Shale Oil Reservoir Based on Soaking Pressure [J]. Xinjiang Petroleum Geology, 2022, 43(5): 624-629. |
[4] | XIAO Hanmin, LUO Yongcheng, ZHAO Xinli, ZHANG Haiqin, LIU Xuewei. Factors Influencing Productivity of Horizontal Wells With CO2 Inter-Fracture Flooding [J]. Xinjiang Petroleum Geology, 2022, 43(4): 479-483. |
[5] | WAN Xiaolong, ZHANG Yuanli, FAN Jianming, LI Zhen, ZHANG Chao. Production System of Horizontal Well in Shale Oil Reservoirs of Chang 7 Member, Ordos Basin [J]. Xinjiang Petroleum Geology, 2022, 43(3): 329-334. |
[6] | FAN Jiwu, XU Zhenping, LIU Lili, ZHANG Juan. Production Profile of Horizontal Wells in Strongly Heterogeneous Tight Gas Reservoirs in Sulige Gas Field [J]. Xinjiang Petroleum Geology, 2022, 43(3): 341-345. |
[7] | LIU Jiaojiao, WANG Delong, LIU Qian, TANG Jing. Evaluation on Adaptability of Horizontal Well Development to Multi-Layer Tight Sandstone Gas Reservoirs [J]. Xinjiang Petroleum Geology, 2022, 43(3): 354-359. |
[8] | WANG Liqiong, WANG Zhiheng, MA Yulong, ZENG Qingxiong, ZHENG Fan. Technologies and Application of Sidetracking Horizontal Well in Existing Wells in Sulige Gas Field [J]. Xinjiang Petroleum Geology, 2022, 43(3): 368-377. |
[9] | CAI Wenjun, FENG Yongcun, YAN Wei, JIANG Qingping, MENG Xianglong, LIU Kai. Fracability Evaluation of Conglomerate Reservoirs in Baikouquan Formation in Ma-131 Well Block [J]. Xinjiang Petroleum Geology, 2022, 43(2): 194-199. |
[10] | WANG Quan, CHEN Chao, Hasyati SAYITI, ZHANG Yi, BAO Yingjun, WU Min. Early Warning Model for Critical Sand Production in Horizontal Wells Based on Pressure Monitoring: A Case of H Gas Storage in Xinjiang [J]. Xinjiang Petroleum Geology, 2022, 43(2): 214-220. |
[11] | ZHENG Jian, FU Yongqiang, CHEN Man, JING Cui, ZHANG Jing, ZHOU Hao, ZHANG Jiahao. Application of Vertical P⁃Wave Slowness in Porosity Evaluation of Shale Gas Reservoirs in Highly Deviated or Horizontal Wells [J]. Xinjiang Petroleum Geology, 2021, 42(zk(English)): 158-164. |
[12] | LU Ting, WANG Mingchuan, MA Wenli, PENG Zeyang, TIAN Lingyu, LI Wangpeng. Fractured Horizontal Well Test Model for Shale Gas Reservoirs With Considering Multiple Stress Sensitive Factors [J]. Xinjiang Petroleum Geology, 2021, 42(6): 741-748. |
[13] | LIANG Chenggang, XIE Jianyong, CHEN Yiwei, LIU Juanli, HE Yongqing, ZHAO Jun, WANG Wei, WANG Liangzhe. Genesis and Coupling Relationship of Fractures in Shale Reservoir of Lucaogou Formation in Jimsar Sag, Junggar Basin [J]. Xinjiang Petroleum Geology, 2021, 42(5): 521-528. |
[14] | LI Jingjing, SUN Guoxiang, LIU Qi, LIU Miao. Pore Structure and Sensitivity of Shale Reservoir in Lu 1 Member of Jimsar Sag [J]. Xinjiang Petroleum Geology, 2021, 42(5): 541-547. |
[15] | TANG Hongjiao, LIANG Baoxing, LIU Weizhou, LIU Huan, SHI Feng, LAN Shangtao, WANG Qixiang. Lower Limits of Pore Throat Radius for Movable Fluids in Shale Reservoirs of Lucaogou Formation in Jimsar Sag [J]. Xinjiang Petroleum Geology, 2021, 42(5): 612-616. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||