Xinjiang Petroleum Geology ›› 2023, Vol. 44 ›› Issue (2): 238-244.doi: 10.7657/XJPG20230215
• APPLICATION OF TECHNOLOGY • Previous Articles Next Articles
WU Bo1(), YANG Wendong2(
), LYU Jing1, LUO Junlan1
Received:
2022-06-09
Revised:
2022-07-27
Online:
2023-04-01
Published:
2023-03-31
CLC Number:
WU Bo, YANG Wendong, LYU Jing, LUO Junlan. Comprehensive Identification of Fractured-Vuggy Reservoirs in Tahe Oilfield[J]. Xinjiang Petroleum Geology, 2023, 44(2): 238-244.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1.
Dynamically quantitative reservoir identification in the X fractured-vuggy unit in Tahe oilfield"
储集层 类型 | 酸压压力 | 产液量变化 | 含水变化 | 生产动态 | 注水量/ (m3·MPa-1) |
---|---|---|---|---|---|
溶洞型 | 注冻胶、酸液阶段有沟通缝洞显示,泵压下降≥12.0 MPa,停泵压力≤10.0 MPa,压降2.2~8.3 MPa | 稳产期≥650 d,稳定产液量≥40 t/d,后期缓慢下降,累计产液量≥7×104 t | 开井未见水,无水采油期≥8个月,见水后快速上升 开井见水,含水波动变化 | 自喷期≥8个月,采液量≥0.50×104 t/MPa,油压下降速度≤0.6 MPa/a 机抽期动液面≤300 m,采液量≥0.60×104 t/hm | ≥26 000 |
缝洞型 | 注冻胶、酸液阶段有沟通小缝洞显示,泵压下降3.5~7.0 MPa,停泵压力13.0~22.0 MPa,压降1.6~2.4 MPa | 稳产期138~398 d,稳定产液量22~30 t/d,后期较快下降,累计产液量4.9×104~6.4×104 t | 开井未见水,无水采油期2~7个月,见水后缓慢上升 开井见水,含水波动变化 | 自喷期≥8个月,采液量0.10×104~0.40×104 t/MPa,油压下降速度3.2~7.1 MPa/a 机抽期动液面300~700 m,采液量0.20×104~0.40×104 t/hm | |
裂缝型 | 注冻胶、酸液阶段显示滤失特征,泵压下降≤2.0 MPa,停泵压力≥20.0 MPa,压降0.3~4.0 MPa | 无稳产期,产液快速下降,累计产液量≤4.4×104 t | 开井油水同出,暴性水淹 | 自喷期≤2个月,采液量≤0.05×104 t/MPa,油压下降速度≥14.0 MPa/a 机抽期动液面≥1 800 m,采液量≤0.02×104 t/hm | ≤300 |
Table 2.
Morphology of well testing curves for fractured-vuggy reservoirs and corresponding reservoir characteristics in Tahe oilfield"
形态特征 | 井数/口 | 储集体结构特征 | 生产特征 | 主要分布区块 |
---|---|---|---|---|
“V”字型 | 20 | 垂向裂缝较发育,溶洞型储集层规模较大 | 初期高产且供液充足,但易发生暴性水淹 | 11区、托甫台、跃进、顺北 |
双下凹型 | 22 | 具有多套溶洞型储集体,储集层规模中等 | 大多供液较充足 | 风化壳岩溶区 |
后期下掉型 | 17 | 沟通一定规模的单套储集层 | 初期平均日产油68.0 t | 7区、12区 |
上升闭合型 | 8 | 沟通定容型储集层 | 初期平均日产油24.7 t | 10区、12区 |
水平直线型 | 5 | 径向流,均质裂缝-孔洞型储集层,未探测到边界,规模相对较大 | 供液充足,平均日产油92.0 t | 零星分布于各区块 |
上升直线型 | 30 | 储集体规模有限,裂缝或小缝洞体 | 供液能力不足,多注水替油或间开生产 | 7区、10区、12区 |
Table 3.
Tracer production curves and characteristics of fracture-vuggy reservoirs in Tahe oilfield"
峰型 | 峰值个数 | 峰值两翼特征 | 缝洞组合结构 |
---|---|---|---|
尖峰型 | 1个 | 两翼基本对称 | 单一裂缝型 |
单一管道型 | |||
缓峰型 | 1个 | 上升翼陡,下降翼缓,下降翼明显拖尾 | 单一溶洞型 |
裂缝型串联溶洞型 | |||
管道型串联溶洞型 | |||
多峰型 | 独立多峰 | 各峰两翼基本对称 | 裂缝型并联,各并联体流动差异大 |
管道型并联,各并联体流动差异大 | |||
各峰两翼不对称,上升翼陡,下降翼缓 | 溶洞型和管道型并联,各并联体流动差异大 | ||
连续多峰 | 上半峰两翼对称,下降翼拖尾,连续峰值持续时间短 | 裂缝型并联,各并联体流动差异小 | |
管道型并联,各并联体流动差异小 | |||
上半峰两翼基本对称,下降翼拖尾明显,连续峰值持续时间长 | 溶洞型和管道型并联,各并联体流动差异小 |
[1] | 鲁新便, 蔡忠贤. 缝洞型碳酸盐岩油藏古溶洞系统与油气开发:以塔河碳酸盐岩溶洞型油藏为例[J]. 石油与天然气地质, 2010, 31(1):22-27. |
LU Xinbian, CAI Zhongxian. A study of the paleo-cavern system in fractured-vuggy carbonate reservoirs and oil/gas development:taking the reservoirs in Tahe oilfield as an example[J]. Oil & Gas Geology, 2010, 31(1):22-27. | |
[2] | 李军, 唐博超, 韩东, 等. 断控缝洞型油藏储集体发育特征及其连通关系:以塔河油田托甫台地区T单元为例[J]. 新疆石油地质, 2022, 43(5):572-579. |
LI Jun, TANG Bochao, HAN Dong, et al. Characteristics and connectivity of fault-controlled fractured-vuggy reservoirs:a case study of Unit T in Tuofutai area,Tahe oilfield[J]. Xinjiang Petroleum Geology, 2022, 43(5):572-579. | |
[3] | 张长建, 吕艳萍, 张振哲. 塔里木盆地塔河油田西部斜坡区中下奥陶统古岩溶洞穴发育特征[J]. 石油实验地质, 2022, 44(6):1008-1 017. |
ZHANG Changjian, LÜ Yanping, ZHANG Zhenzhe. Features of Middle-Lower Ordovician paleo-karst caves in western slope area,Tahe oil field,Tarim basin[J]. Petroleum Geology & Experiment, 2022, 44(6):1008-1 017. | |
[4] | 张娟, 杨敏, 谢润成, 等. 塔里木盆地塔河油田4区和6区奥陶系小尺度缝洞储集体概率识别方法[J]. 石油与天然气地质, 2022, 43(1):219-228. |
ZHANG Juan, YANG Min, XIE Runcheng, et al. Probability-constrained identification of Ordovician small-scale fractured-vuggy reservoirs in Blocks 4-6,Tahe oilfield,Tarim basin[J]. Oil & Gas Geology, 2022, 43(1):219-228. | |
[5] | 刘晶晶, 毛毳, 魏荷花, 等. 塔河油田奥陶系缝洞充填序列及其测井响应[J]. 新疆石油地质, 2021, 42(1):46-52. |
LIU Jingjing, MAO Cui, WEI Hehua, et al. Ordovician fracture-cavity filling sequence and its logging responses in Tahe oilfield[J]. Xinjiang Petroleum Geology, 2021, 42(1):46-52. | |
[6] | SHALABY M R, ISLAM M A. Fracture detection using conventional well logging in carbonate Matulla formation,Geisum oil field,southern Gulf of Suez,Egypt[J]. Journal of Petroleum Exploration & Production Technology, 2017, 7:977-989. |
[7] | 李曦宁. 缝洞型储层综合测井评价方法研究[D]. 北京: 中国石油大学(北京), 2019. |
LI Xining. Study on integrated logging evaluation of the fractured-vuggy reservoir[D]. Beijing: China University of Petroleum(Beijing), 2019. | |
[8] | 马灵伟. 塔中顺南地区缝洞型储层地震响应特征及识别模式研究[D]. 北京: 中国地质大学, 2014. |
MA Lingwei. Seismic response characteristics and recongnize pattern of the Ordovician fractures-vuggy reservoirs in Tazhong Shunnan area[D]. Beijing: China University of Geosciences, 2014. | |
[9] | 蔡紫薇. 塔河油田深层碳酸盐岩储层精细刻画研究[D]. 成都: 成都理工大学, 2018. |
CAI Ziwei. Research on description of deep carbonate reservoirs in Tahe oilfield[D]. Chengdu: Chengdu University of Technology, 2018. | |
[10] | 陈军, 文国华, 王甲昌, 等. 塔中地区碳酸盐岩储层酸压曲线特征分析[J]. 长江大学学报(自科版), 2016, 13(31):24-30. |
CHEN Jun, WEN Guohua, WANG Jiachang, et al. Analysis of acid fracturing curve characteristics of carbonate reservoirs in Tazhong area[J]. Journal of Yangtze University(Natural Science Edition), 2016, 13(31):24-30. | |
[11] | 田东江, 罗志锋, 牛新年, 等. 复杂碳酸盐岩储层酸压沟通模式识别新方法与应用[J]. 钻采工艺, 2017, 40(3):62-64. |
TIAN Dongjiang, LUO Zhifeng, NIU Xinnian, et al. A new method recognizing fracture communication modes during acid frac in complicated carbonate reservoirs and its application[J]. Drilling & Production Technology, 2017, 40(3):62-64. | |
[12] | 程洪. 缝洞型碳酸盐岩油藏生产动态曲线指示意义研究[D]. 成都: 成都理工大学, 2020. |
CHENG Hong. Research on indication significance of production dynamic curve of fracture vuggy carbonate reservoir[D]. Chengdu: Chengdu University of Technology, 2020. | |
[13] | 李成刚, 李英强. 碳酸盐岩断溶体油藏模型识别图版及其应用[J]. 大庆石油地质与开发, 2020, 39(4):87-93. |
LI Chenggang, LI Yingqiang. Identifying chart boards and their applications of the models for the fault-karst carbonate oil reservoir[J]. Petroleum Geology & Oilfield Development in Daqing, 2020, 39(4):87-93. | |
[14] | 杨敏, 龙喜彬, 潜欢欢, 等. 塔河缝洞型油藏试井曲线特征及储集体识别[J]. 油气井测试, 2020, 29(3):64-70. |
YANG Min, LONG Xibin, QIAN Huanhuan, et al. Well test curve characteristics and reservoir identification of fractured carbonate reservoir in Tahe oilfield[J]. Well Testing, 2020, 29(3):64-70. | |
[15] | 唐志春, 赵凡溪, 刘客, 等. 注水指示曲线在油藏开发中的应用[J]. 河北地质大学学报, 2021, 44(2):63-68. |
TANG Zhichun, ZHAO Fanxi, LIU Ke, et al. Application of water injection indicating curve in reservoir development[J]. Journal of Hebei GEO University, 2021, 44(2):63-68. | |
[16] |
YUE Ping, XIE Zhiwei, LIU Haohan, et al. Application of water injection curves for the dynamic analysis of fractured-vuggy carbonate reservoirs[J]. Journal of Petroleum Science and Engineering, 2018, 169:220-229.
doi: 10.1016/j.petrol.2018.05.062 |
[17] | 李小波, 彭小龙, 史英, 等. 井间示踪剂测试在缝洞型油藏的应用[J]. 石油天然气学报, 2008, 30(6):271-274. |
LI Xiaobo, PENG Xiaolong, SHI Ying, et al. Application of interwell tracer testing in fracture-cavity reservoirs[J]. Journal of Oil and Gas Technology, 2008, 30(6):271-274. | |
[18] | 刘洪. 碳酸盐岩储层介质类型试井判别方法研究[D]. 湖北荆州: 长江大学, 2012. |
LIU Hong. The medium type well-test distinguishing method research of carbonate reservoir[D]. Jingzhou,Hubei: Yangtze University, 2012. | |
[19] | 邹宁, 黄知娟, 马国锐, 等. 缝洞型油藏井间示踪剂分类等效解释模型及其应用[J]. 西安石油大学学报(自然科学版), 2021, 36(1):52-58. |
ZOU Ning, HUANG Zhijuan, MA Guorui, et al. Classified equivalent interpretation model for interwell tracer in fractured-vuggy reservoir and its application[J]. Journal of Xi’an Shiyou University(Natural Science), 2021, 36(1):52-58. | |
[20] | 高利君, 李宗杰, 李海英, 等. 塔里木盆地深层岩溶缝洞型储层三维雕刻“五步法”定量描述技术研究与应用[J]. 物探与化探, 2020, 44(3):691-697. |
GAO Lijun, LI Zongjie, LI Haiying, et al. The deep karst fissure and cavern reservoir in Tarim basin is carved in three dimensions:research and application of “fivestep method” quantitative description technology[J]. Geophysical and Geochemical Exploration, 2020, 44(3):691-697. |
[1] | LI Haiying, HAN Jun, CHEN Ping, LI Yuan, BU Xuqiang. Deformation and Favorable Area Evaluation of Shunbei No.4 Strike-Slip Fault Zone in Tarim Basin [J]. Xinjiang Petroleum Geology, 2023, 44(2): 127-135. |
[2] | ZHANG Jing, HU Dandan, QIN Jianhua, WANG Yingwei, TANG Huiying. Optimization of Key Fracturing Parameters for Profitable Development of Horizontal Wells in Mahu Conglomerate Reservoirs [J]. Xinjiang Petroleum Geology, 2023, 44(2): 184-194. |
[3] | TANG Jun, HE Ze, SHEN Wei, QI Gewei, GUO Weimin. Productivity-Based Classified Logging Evaluation of Carbonate Reservoirs: A Case Study on Yijianfang Formation in Tuofutai Area, Tarim Basin [J]. Xinjiang Petroleum Geology, 2023, 44(1): 112-118. |
[4] | GU Hao, KANG Zhijiang, SHANG Genhua, ZHANG Dongli, LI Hongkai, HUANG Xiaote. Reasonable Productivity Optimization Methods and Application in Ultra-Deep Fault-Controlled Fractured-Vuggy Reservoirs [J]. Xinjiang Petroleum Geology, 2023, 44(1): 64-69. |
[5] | ZHANG Changjian, LYU Yanping, MA Hailong, GENG Tian, ZHANG Xiao. Fracture-Cave System in Collapsed Underground Paleo-River With Subterranean Flow in Karst Canyon Area,Tahe Oilfield [J]. Xinjiang Petroleum Geology, 2023, 44(1): 9-17. |
[6] | QIAN Menhui, WANG Xulong, LI Maowen, LI Zhiming, LENG Junying, SUN Zhongliang. Oil-Bearing Properties and Hydrocarbon Occurrence States of Fengcheng Formation Shale in Well Maye-1,Mahu Sag [J]. Xinjiang Petroleum Geology, 2022, 43(6): 693-703. |
[7] | ZOU Yang, QI Yanping, SONG Dong, CHEN Wenshun, WEI Panyun. Geological Characteristics and Sweet Spot Evaluation of Shale Oil Reservoir in Fengcheng Formation in Well Maye-1 [J]. Xinjiang Petroleum Geology, 2022, 43(6): 714-723. |
[8] | LEI Haiyan, QI Jing, ZHOU Ni, CHEN Jun, MENG Ying, ZHANG Xixin, CHEN Ruibing. Genesis and Petroleum Significance of Silica-Rich Shale in Fengcheng Formation of Well Maye-1,Mahu Sag [J]. Xinjiang Petroleum Geology, 2022, 43(6): 724-732. |
[9] | YU Peirong, ZHENG Guoqing, SUN Futai, WANG Zhenlin. Simulation on Fracture Propagation During Hydraulic Fracturing in Horizontal Wells in Shale Reservoirs of Fengcheng Formation,Mahu Sag [J]. Xinjiang Petroleum Geology, 2022, 43(6): 750-756. |
[10] | LI Jun, TANG Bochao, HAN Dong, LU Haitao, GENG Chunying, HUANG Mina. Characteristics and Connectivity of Fault-Controlled Fractured-Vuggy Reservoirs: A Case Study of Unit T in Tuofutai Area, Tahe Oilfield [J]. Xinjiang Petroleum Geology, 2022, 43(5): 572-579. |
[11] | SONG Junqiang, LI Xiaoshan, WANG Shuo, GU Kaifang, PAN Hong, WANG Xin. Production Prediction of Fractured Horizontal Wells in Tight Oil Reservoirs [J]. Xinjiang Petroleum Geology, 2022, 43(5): 580-586. |
[12] | WANG Quan, WANG Bin, YAN Liheng, WANG Yang, LUO Jianxin, DU Guo. Characteristics and Genesis Mechanism of Wellhead Pressure Fluctuation for Well Hutan-1 [J]. Xinjiang Petroleum Geology, 2022, 43(5): 587-591. |
[13] | LU Yu, LI Zhongping, LI Huaji, LUO Changchuan, LUO Bin. Candidate Well Selection Criteria for Potential Tapping of Existing Wells in Gas Reservoirs of Penglaizhen Formation in Xinchang Gas Field, Western Sichuan Basin [J]. Xinjiang Petroleum Geology, 2022, 43(5): 592-599. |
[14] | JIA Ran, NIE Renshi, LIU Yong, WANG Peijun, NIU Ge, LU Cong. Tri-Porosity and Dual-Permeability Well Test Analysis Model for Inclined Wells in Fractured-Vuggy Reservoirs [J]. Xinjiang Petroleum Geology, 2022, 43(5): 606-611. |
[15] | WANG Fei, WU Baocheng, LIAO Kai, SHI Shanzhi, ZHANG Shicheng, LI Jianmin, SUO Jielin. Inversion of Fracture Parameters and Formation Pressure for Fractured Horizontal Wells in Shale Oil Reservoir Based on Soaking Pressure [J]. Xinjiang Petroleum Geology, 2022, 43(5): 624-629. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||