新疆石油地质 ›› 2024, Vol. 45 ›› Issue (6): 725-734.doi: 10.7657/XJPG20240612
收稿日期:
2024-03-21
修回日期:
2024-04-12
出版日期:
2024-12-01
发布日期:
2024-11-26
通讯作者:
高文君(1971-),男,陕西乾县人,高级工程师,油藏工程,(Tel)0902-2766453(Email)作者简介:
葛启兵(1985-),男,四川乐山人,高级工程师,油气田开发,(Tel)0902-2766453(Email)基金资助:
GE Qibinga(), LIU Qianb, MA Jianhongb, GAO Wenjuna(
)
Received:
2024-03-21
Revised:
2024-04-12
Online:
2024-12-01
Published:
2024-11-26
摘要:
针对吐哈盆地低黏油藏油相相对渗透率初期急剧下降,高含水期后下降变缓的特点,提出了一种新的油水相渗数学模型。新模型待定参数求解简便,拟合精度较高,不仅可以描述初期急剧下降、后期下降变缓的油相相对渗透率曲线,以及弓背形水相相对渗透率曲线,还可以描述常见的“X”形油水两相相对渗透率曲线。为了应用方便,提出了新的油水相渗数学模型对应的水驱油解析法,并与Gao简化式油水相渗数学模型对比,进一步论证了油层平均含水饱和度与出口端含水饱和度的线性关系式,直接代入分流量方程中,可得到一种新的广义含水变化规律。油藏应用效果较好,可供同类油藏借鉴。
中图分类号:
葛启兵, 刘倩, 马建红, 高文君. 一种新的油水相渗数学模型建立及应用——以吐哈盆地低黏油藏为例[J]. 新疆石油地质, 2024, 45(6): 725-734.
GE Qibing, LIU Qian, MA Jianhong, GAO Wenjun. Establishment and Application of a New Mathematical Model of Oil/Water Relative Permeability: A Case Study of Low-Viscosity Reservoirs in Tuha Basin[J]. Xinjiang Petroleum Geology, 2024, 45(6): 725-734.
表1
吐哈盆地稀油油藏油水两相相渗数学模型拟合结果"
岩样号 | 渗透率/mD | 油相 | 水相 | |||||
---|---|---|---|---|---|---|---|---|
n | b | 相关系数 | m | c | 相关系数 | |||
鄯10-131井4号 | 1.43 | 0.141 5 | -0.118 0 | 0.999 99 | 0.250 6 | 1.235 3 | -0.439 1 | 1.000 00 |
陵13-211井12号 | 38.10 | 0.263 3 | -0.237 8 | 1.000 00 | 0.267 3 | 2.814 3 | -0.091 6 | 0.999 94 |
温检5-1井3号 | 103.00 | 0.258 3 | -0.229 9 | 1.000 00 | 0.256 9 | 1.577 0 | 0.077 2 | 0.997 25 |
温检3-1井122号 | 67.40 | 0.485 2 | -0.447 4 | 0.999 99 | 0.359 9 | 1.996 2 | -0.285 7 | 0.999 99 |
温西6-522井12号 | 0.87 | 0.165 0 | -0.149 6 | 1.000 00 | 0.222 0 | 0.933 4 | 0.468 2 | 1.000 00 |
葡北20井A5-2号 | 46.80 | 0.098 0 | -0.101 3 | 1.000 00 | 0.406 1 | 3.077 1 | -3.152 2 | 0.991 58 |
果新8-45井08199号 | 125.00 | 0.100 3 | -0.100 9 | 1.000 00 | 0.309 5 | 0.732 6 | -0.444 7 | 0.998 56 |
葡4井132号 | 104.17 | 0.228 0 | -0.208 4 | 0.999 99 | 0.153 4 | 1.306 9 | 2.989 5 | 0.998 24 |
表2
吐哈盆地8个稀油油藏驱替特征参数计算结果"
岩样号 | 地下黏度/(mPa·s) | 束缚水 饱和度 | 残余油 饱和度 | 水驱前缘 含水饱和度 | 水驱前缘 含水率 | 水驱前缘后平均 含水饱和度 | |
---|---|---|---|---|---|---|---|
原油 | 水 | ||||||
鄯10-131井4号 | 0.387 9 | 0.342 6 | 0.394 4 | 0.376 6 | 0.540 4 | 0.677 5 | 0.609 8 |
陵13-211井12号 | 0.263 6 | 0.367 8 | 0.305 0 | 0.200 0 | 0.719 7 | 0.912 7 | 0.759 4 |
温检5-1井3号 | 0.350 0 | 0.395 0 | 0.360 0 | 0.280 0 | 0.632 4 | 0.861 1 | 0.676 3 |
温检3-1井122号 | 0.500 0 | 0.395 0 | 0.330 4 | 0.329 7 | 0.585 0 | 0.865 2 | 0.624 7 |
温西6-522井12号 | 0.691 0 | 0.390 5 | 0.440 0 | 0.376 6 | 0.513 4 | 0.604 8 | 0.561 3 |
葡北20井A5-2号 | 0.350 0 | 0.395 0 | 0.341 0 | 0.224 0 | 0.555 2 | 0.784 6 | 0.613 9 |
果新8-45井08199号 | 0.233 0 | 0.333 8 | 0.323 0 | 0.220 0 | 0.405 8 | 0.351 9 | 0.558 4 |
葡4井132号 | 0.270 0 | 0.351 0 | 0.381 3 | 0.318 4 | 0.651 1 | 0.938 8 | 0.667 4 |
表3
2种油相相渗数学模型拟合结果"
岩样号 | (1)式 | (18)式 | ||||
---|---|---|---|---|---|---|
n | b | 相关系数 | n | b | 相关系数 | |
鄯10-131井4号 | 0.141 5 | -0.118 0 | 0.999 99 | 6.478 3 | -4.571 4 | 0.999 90 |
陵13-211井12号 | 0.263 3 | -0.237 8 | 1.000 00 | 5.010 5 | -3.071 4 | 1.000 00 |
温检5-1井3号 | 0.258 3 | -0.229 9 | 1.000 00 | 5.110 0 | -3.215 8 | 0.999 99 |
温检3-1井122号 | 0.485 2 | -0.447 4 | 0.999 99 | 3.596 7 | -1.739 5 | 1.000 00 |
温西6-522井12号 | 0.165 0 | -0.149 6 | 1.000 00 | 5.823 8 | -3.733 2 | 1.000 00 |
葡北20井A5-2号 | 0.098 0 | -0.101 3 | 1.000 00 | 6.496 9 | -3.698 0 | 0.999 99 |
果新8-45井08199号 | 0.100 3 | -0.100 9 | 1.000 00 | 6.521 0 | -3.936 2 | 1.000 00 |
葡4井132号 | 0.228 0 | -0.208 4 | 0.999 99 | 5.270 8 | -3.251 0 | 0.999 99 |
表4
利用本文数学模型生成数据拟合结果"
井名 | (19)式 | (20)式 | (21)式 | |||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a0 | a1 | a2 | a3 | R | a0 | a1 | a2 | a3 | R | a0 | ||||||||||||||||||||
鄯10-131井 | 2.912 2 | -12.847 8 | 22.812 2 | -12.808 0 | 1.000 0 | -30.861 5 | 143.819 9 | -221.258 6 | 114.558 4 | 0.999 6 | 0.286 6 | |||||||||||||||||||
陵13-211井 | 8.113 7 | -31.928 5 | 45.238 2 | -20.943 2 | 0.999 9 | -112.674 6 | 445.125 8 | -584.375 9 | 256.585 2 | 0.999 5 | 0.359 8 | |||||||||||||||||||
温检5-1井 | 6.501 1 | -28.083 0 | 44.201 0 | -22.705 0 | 0.999 9 | -125.259 2 | 547.078 2 | -794.639 7 | 385.859 7 | 0.999 7 | 0.351 9 | |||||||||||||||||||
温检3-1井 | 5.877 9 | -27.332 7 | 46.353 2 | -25.608 9 | 0.999 9 | -75.056 9 | 354.175 7 | -555.021 2 | 291.177 5 | 0.999 6 | 0.296 3 | |||||||||||||||||||
温西6-522井 | 6.186 4 | -30.954 7 | 55.806 5 | -32.827 9 | 0.999 9 | -59.759 2 | 302.787 8 | -509.008 1 | 286.610 2 | 0.999 8 | 0.253 2 | |||||||||||||||||||
葡北20井 | 1.868 6 | -7.879 9 | 14.617 4 | -8.116 8 | 0.999 9 | -8.996 3 | 42.156 4 | -63.179 5 | 32.365 0 | 0.999 5 | 0.296 3 | |||||||||||||||||||
果新8-45井 | 0.310 7 | 0.352 3 | 0.775 1 | -0.585 0 | 1.000 0 | -4.510 9 | 20.134 2 | -28.217 8 | 14.236 5 | 0.999 9 | 0.302 2 | |||||||||||||||||||
葡4井 | 28.994 5 | -132.372 4 | 205.217 8 | -105.563 7 | 0.999 9 | -551.164 5 | 2 483.367 3 | -3 727.663 9 | 1 866.294 1 | 0.999 6 | 0.334 8 | |||||||||||||||||||
井名 | (21)式 | (22)式 | (23)式 | (24)式 | ||||||||||||||||||||||||||
a1 | R | a0 | k | R | a0 | a1 | R | a0 | a1 | R | ||||||||||||||||||||
鄯10-131井 | 0.602 3 | 0.997 2 | 1.267 8×10-3 | -6.750 0 | 0.909 5 | -0.076 8 | -0.241 9 | 0.989 6 | 2.084 8×10-2 | 11.683 8 | 0.926 2 | |||||||||||||||||||
陵13-211井 | 0.555 3 | 0.997 5 | 1.606 1×10-3 | -9.244 3 | 0.950 4 | -0.066 9 | -0.321 8 | 0.994 8 | 1.820 2×10-3 | 13.395 4 | 0.959 4 | |||||||||||||||||||
温检5-1井 | 0.515 3 | 0.997 8 | 4.752 0×10-4 | -9.573 2 | 0.947 2 | -0.099 2 | -0.313 8 | 0.997 2 | 1.360 9×10-3 | 15.485 9 | 0.957 1 | |||||||||||||||||||
温检3-1井 | 0.562 7 | 0.997 3 | 1.560 4×10-4 | -10.217 3 | 0.944 6 | -0.102 8 | -0.266 5 | 0.995 6 | 9.572 2×10-4 | 17.403 9 | 0.953 3 | |||||||||||||||||||
温西6-522井 | 0.597 7 | 0.998 9 | 3.088 4×10-5 | -11.421 8 | 0.933 5 | -0.105 1 | -0.228 8 | 0.996 8 | 3.756 3×10-4 | 20.712 6 | 0.942 6 | |||||||||||||||||||
葡北20井 | 0.757 2 | 0.995 1 | 3.714 6×10-3 | -4.815 8 | 0.838 0 | -0.030 9 | -0.152 5 | 0.940 9 | 1.683 0×10-1 | 8.048 3 | 0.863 8 | |||||||||||||||||||
果新8-45井 | 0.617 1 | 0.999 4 | 5.755 9×10-3 | -4.222 5 | 0.877 0 | -0.046 7 | -0.046 7 | 0.993 4 | 1.510 2×10-1 | 7.891 4 | 0.914 8 | |||||||||||||||||||
葡4井 | 0.334 8 | 0.996 8 | 1.812 9×10-8 | -32.201 1 | 0.977 1 | -0.132 8 | -0.349 1 | 0.990 5 | 6.331 2×10-7 | 28.487 0 | 0.971 6 | |||||||||||||||||||
井名 | (25)式 | (26)式 | (27)式 | |||||||||||||||||||||||||||
a0 | k | R | a0 | k | R | a0 | k | a1 | R | |||||||||||||||||||||
鄯10-131井 | 0.113 4 | 0.773 7 | 0.999 0 | -0.007 8 | -2.557 8 | 0.996 5 | 0.181 4 | 0.660 5 | 1.427 7 | 0.999 3 | ||||||||||||||||||||
陵13-211井 | 0.191 3 | 0.869 6 | 0.998 1 | -0.003 3 | -3.523 7 | 0.996 9 | 0.265 0 | 0.820 2 | 1.246 6 | 0.999 0 | ||||||||||||||||||||
温检5-1井 | 0.166 6 | 0.943 3 | 0.997 7 | -0.053 7 | -1.056 7 | 0.997 1 | 0.281 1 | 0.870 3 | 1.384 5 | 0.998 8 | ||||||||||||||||||||
温检3-1井 | 0.139 1 | 0.929 1 | 0.998 4 | 1.839 9 | 1.229 6 | 0.979 1 | 1.763 6 | 2.607 4 | 1.309 7 | 0.974 1 | ||||||||||||||||||||
温西6-522井 | 0.070 1 | 0.872 2 | 0.998 1 | -0.070 7 | -0.855 7 | 0.997 6 | 0.181 7 | 0.812 1 | 1.602 2 | 0.999 1 | ||||||||||||||||||||
葡北20井 | 0.141 0 | 0.244 0 | 0.997 0 | -0.001 5 | -4.122 3 | 0.972 1 | 0.115 6 | 0.530 3 | 1.322 3 | 0.995 0 | ||||||||||||||||||||
果新8-45井 | 0.173 4 | 0.925 3 | 0.999 1 | -0.269 5 | -0.329 2 | 0.998 9 | 0.270 3 | 0.866 0 | 1.288 8 | 0.999 8 | ||||||||||||||||||||
葡4井 | 0.129 7 | 0.956 2 | 0.996 6 | 0.724 9 | 0.438 7 | 0.996 6 | 0.311 8 | 0.988 7 | 1.458 0 | 0.998 5 |
表5
利用Gao简化数学模型生成数据拟合结果"
井名 | (19)式 | (20)式 | (21)式 | |||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a0 | a1 | a2 | a3 | R | a0 | a1 | a2 | a3 | R | a0 | ||||||||||||||||||||
鄯10-131井 | 5.084 0 | -24.613 0 | 43.667 9 | -24.937 4 | 0.999 8 | -44.702 6 | 212.074 3 | -332.485 9 | 174.515 1 | 0.999 1 | 0.235 2 | |||||||||||||||||||
陵13-211井 | 4.508 4 | -17.128 3 | 25.118 7 | -11.883 0 | 0.999 9 | -84.959 8 | 337.677 2 | -445.915 6 | 197.281 0 | 0.999 9 | 0.392 1 | |||||||||||||||||||
温检5-1井 | 2.805 2 | -11.660 2 | 20.038 4 | -10.931 1 | 0.999 9 | -75.083 1 | 334.694 9 | -495.651 9 | 245.874 7 | 1.000 0 | 0.357 0 | |||||||||||||||||||
温检3-1井 | 2.712 1 | -11.866 8 | 21.306 2 | -12.157 9 | 1.000 0 | -43.683 2 | 208.422 5 | -329.722 2 | 175.298 7 | 1.000 0 | 0.314 7 | |||||||||||||||||||
温西6-522井 | 6.963 2 | -36.117 3 | 66.645 6 | -40.146 3 | 0.999 9 | -63.475 3 | 326.770 2 | -557.951 6 | 318.761 8 | 1.000 0 | 0.221 3 | |||||||||||||||||||
葡北20井 | 1.727 6 | -7.119 4 | 13.185 6 | -7.214 6 | 0.999 9 | -6.896 9 | 32.207 8 | -47.439 4 | 24.074 4 | 1.000 0 | 0.314 7 | |||||||||||||||||||
果新8-45井 | 1.265 3 | -4.554 1 | 8.892 3 | -4.947 0 | 0.999 9 | -8.697 6 | 39.394 0 | -57.279 7 | 28.667 2 | 1.000 0 | 0.252 5 | |||||||||||||||||||
葡4井 | 12.638 8 | -56.206 0 | 87.159 4 | -44.654 3 | 1.000 0 | -342.529 4 | 1 539.369 2 | -2 304.580 8 | 1 151.522 4 | 1.000 0 | 0.367 8 | |||||||||||||||||||
井名 | (21)式 | (22)式 | (23)式 | (24)式 | ||||||||||||||||||||||||||
a1 | R | a0 | k | R | a0 | a1 | R | a0 | a1 | R | ||||||||||||||||||||
鄯10-131井 | 0.683 5 | 0.989 2 | 1.392 3×10-3 | -6.464 8 | 0.820 7 | -0.052 6 | -0.190 0 | 0.941 9 | 2.931 6×10-2 | 11.208 0 | 0.842 1 | |||||||||||||||||||
陵13-211井 | 0.512 9 | 0.998 9 | 1.325 3×10-3 | -9.599 0 | 0.925 8 | -0.072 5 | -0.343 8 | 0.998 2 | 1.061 8×10-3 | 14.238 1 | 0.939 2 | |||||||||||||||||||
温检5-1井 | 0.509 3 | 0.996 7 | 3.027 7×10-4 | -10.570 3 | 0.908 2 | -0.098 4 | -0.314 9 | 0.993 9 | 4.798 3×10-4 | 17.116 9 | 0.921 6 | |||||||||||||||||||
温检3-1井 | 0.534 2 | 0.999 1 | 1.273 9×10-4 | -10.482 3 | 0.920 3 | -0.107 6 | -0.278 2 | 0.997 4 | 6.337 9×10-4 | 18.189 2 | 0.932 6 | |||||||||||||||||||
温西6-522井 | 0.651 5 | 0.995 7 | 1.417 2×10-5 | -12.726 1 | 0.876 8 | -0.089 2 | -0.198 3 | 0.981 7 | 1.161 3×10-4 | 22.855 9 | 0.887 7 | |||||||||||||||||||
葡北20井 | 0.801 0 | 0.997 0 | 2.808 8×10-3 | -5.347 0 | 0.830 0 | -0.021 2 | -0.127 4 | 0.940 9 | 1.199 0×10-1 | 8.644 6 | 0.854 0 | |||||||||||||||||||
果新8-45井 | 0.686 3 | 0.997 6 | 3.424 4×10-3 | -5.440 4 | 0.866 1 | -0.038 2 | -0.038 2 | 0.980 3 | 6.768 3×10-2 | 9.119 5 | 0.893 1 | |||||||||||||||||||
葡4井 | 0.367 8 | 0.998 9 | 1.172 1×10-6 | -21.595 8 | 0.949 5 | -0.133 0 | -0.347 2 | 0.999 5 | 1.588 5×10-8 | 34.282 8 | 0.954 7 | |||||||||||||||||||
井名 | (25)式 | (26)式 | (27)式 | |||||||||||||||||||||||||||
a0 | k | R | a0 | k | R | a0 | k | a1 | R | |||||||||||||||||||||
鄯10-131井 | 0.124 5 | 0.265 9 | 0.992 8 | -0.010 7 | -2.007 1 | 0.962 3 | 0.133 5 | 0.494 3 | 1.444 5 | 0.993 5 | ||||||||||||||||||||
陵13-211井 | 0.241 6 | 1.002 8 | 0.998 8 | -0.543 5 | -0.222 8 | 0.998 9 | 0.338 4 | 0.892 6 | 1.253 2 | 0.999 7 | ||||||||||||||||||||
温检5-1井 | 0.152 3 | 0.746 7 | 0.999 7 | -0.000 6 | -7.887 5 | 0.999 0 | 3.758 9 | 3.170 3 | 1.194 9 | 0.948 7 | ||||||||||||||||||||
温检3-1井 | 0.146 1 | 0.876 5 | 0.999 7 | -0.004 6 | -3.496 0 | 0.999 5 | 0.302 7 | 0.949 6 | 1.490 5 | 0.999 0 | ||||||||||||||||||||
温西6-522井 | 0.060 0 | 0.498 2 | 0.998 6 | -0.003 5 | -3.558 6 | 0.989 4 | 0.132 9 | 0.674 4 | 1.614 2 | 0.998 0 | ||||||||||||||||||||
葡北20井 | 0.109 5 | 0.242 3 | 0.993 3 | -0.000 8 | -4.852 0 | 0.970 6 | 0.103 6 | 0.522 7 | 1.313 2 | 0.993 4 | ||||||||||||||||||||
果新8-45井 | 0.136 5 | 0.568 2 | 0.998 1 | -0.002 7 | -3.598 3 | 0.995 5 | 0.188 8 | 0.685 4 | 1.301 7 | 0.998 7 | ||||||||||||||||||||
葡4井 | 0.178 4 | 1.143 9 | 0.999 5 | 1.076 1 | 0.875 6 | 0.999 7 | 0.366 8 | 1.005 2 | 1.467 1 | 0.999 8 |
[1] | 陈元千, 邹存友, 张枫. 水驱曲线法在油田开发评价中的应用[J]. 断块油气田, 2011, 18(6):769-771. |
CHEN Yuanqian, ZOU Cunyou, ZHANG Feng. Application of water drive curve method in oilfield development evaluation[J]. Fault-Block Oil & Gas Field, 2011, 18(6):769-771. | |
[2] | 高文君, 彭长水, 李正科. 推导水驱特征曲线的渗流理论基础和通用方法[J]. 石油勘探与开发, 2000, 27(5):56-60. |
GAO Wenjun, PENG Changshui, LI Zhengke. A derivation method and percolation theory of water-drive characteristic curves[J]. Petroleum Exploration and Development, 2000, 27(5):56-60. | |
[3] |
张继成, 宋考平. 相对渗透率特征曲线及其应用[J]. 石油学报, 2007, 28(4):104-107.
doi: 10.7623/syxb200704021 |
ZHANG Jicheng, SONG Kaoping. Eigen curve of relative permeability and its application[J]. Acta Petrolei Sinica, 2007, 28(4):104-107.
doi: 10.7623/syxb200704021 |
|
[4] | 王国先, 谢建勇, 李建良, 等. 储集层相对渗透率曲线形态及开采特征[J]. 新疆石油地质, 2004, 25(3):301-304. |
WANG Guoxian, XIE Jianyong, LI Jianliang, et al. On relative permeability curves and production characteristics of reservoirs[J]. Xinjiang Petroleum Geology, 2004, 25(3):301-304. | |
[5] | 高超, 杨满平, 王刚. 注水开发油藏油水相对渗透率曲线特征评价[J]. 复杂油气藏, 2013, 6(1):46-49. |
GAO Chao, YANG Manping, WANG Gang. Evaluation of oil/water relative permeability curve feature for water-flooding reservoirs[J]. Complex Hydrocarbon Reservoirs, 2013, 6(1):46-49 | |
[6] | 杨宇, 周文, 邱坤泰, 等. 计算相对渗透率曲线的新方法[J]. 油气地质与采收率, 2010, 17(2):105-107. |
YANG Yu, ZHOU Wen, QIU Kuntai, et al. A new method of calculating relative permeability curve[J]. Petroleum Geology and Recovery Efficiency, 2010, 17(2):105-107. | |
[7] |
胡伟, 杨胜来, 翟羽佳, 等. 油水相对渗透率曲线优化校正新方法[J]. 石油学报, 2015, 36(7):871-875.
doi: 10.7623/syxb201507011 |
HU Wei, YANG Shenglai, ZHAI Yujia, et al. A new optimization and correction method of oil-water phase relative permeability curve[J]. Acta Petrolei Sinica, 2015, 36(7):871-875.
doi: 10.7623/syxb201507011 |
|
[8] | 高文君, 姚江荣, 公学成, 等. 水驱油田油水相对渗透率曲线研究[J]. 新疆石油地质, 2014, 35(5):552-557. |
GAO Wenjun, YAO Jiangrong, GONG Xuecheng, et al. Study on oil-water relative permeability curves in water flooding oilfields[J]. Xinjiang Petroleum Geology, 2014, 35(5):552-557. | |
[9] | 付焱鑫, 蔡喜东, 赵嗣君, 等. 低饱和油藏渗流特征研究:以红台油田23块西山窑组油藏为例[J]. 新疆石油天然气, 2018, 14(1):68-74. |
FU Yanxin, CAI Xidong, ZHAO Sijun, et al. Research on the seepage characteristic of low:Saturation reservoir in Hongtai[J]. Xinjiang Oil & Gas, 2018, 14(1):68-74. | |
[10] | 罗群, 高阳, 张泽元, 等. 中国与美国致密油形成条件对比研究[J]. 石油实验地质, 2022, 44(2):199-209. |
LUO Qun, GAO Yang, ZHANG Zeyuan, et al. A comparative study of geological conditions of tight oils in China and USA[J]. Petroleum Geology & Experiment, 2022, 44(2):199-209. | |
[11] | 王东琪, 殷代印. 水驱油藏相对渗透率曲线经验公式研究[J]. 岩性油气藏, 2017, 29(3):159-164. |
WANG Dongqi, YIN Daiyin. Empirical formulas of relative permeability curve of water drive reservoirs[J]. Lithologic Reservoirs, 2017, 29(3):159-164. | |
[12] | 赵忠健, 何志祥, 李治平. 多油层分层参数测试新方法研究与实践[J]. 地质力学学报, 2006, 12(1):71-76. |
ZHAO Zhongjian, HE Zhixiang, LI Zhiping. New test methods for parameters of individual pay zones in a multi-zone reservoir research and practice[J]. Journal of Geomechanics, 2006, 12(1):71-76. | |
[13] | 李婧, 范晖, 刘春茹, 等. 新型油水相渗数学模型的建立及应用[J]. 新疆石油地质, 2023, 44(1):70-75. |
LI Jing, FAN Hui, LIU Chunru, et al. Establishment and application of a new mathematical model of oil/water relative permeability[J]. Xinjiang Petroleum Geology, 2023, 44(1):70-75. | |
[14] | 高文君, 付焱鑫, 潘有军, 等. 水驱油理论解析法[J]. 新疆石油地质, 2016, 37(1):51-55. |
GAO Wenjun, FU Yanxin, PAN Youjun, et al. Analytical method of water displacing oil theory[J]. Xinjiang Petroleum Geology, 2016, 37(1):51-55. | |
[15] | 王陶, 朱卫红, 杨胜来, 等. 用相对渗透率曲线建立水平井采液、吸水指数经验公式[J]. 新疆石油地质, 2009, 30(2):235-237. |
WANG Tao, ZHU Weihong, YANG Shenglai, et al. Application of relative permeability curves to establishment of empirical formulas for fluid productivity index and injectivity index of horizontal well[J]. Xinjiang Petroleum Geology, 2009, 30(2):235-237. | |
[16] | 陈朝晖, 柳茜茜, 潘豪, 等. 无因次采液指数曲线形态特征的影响因素[J]. 断块油气田, 2019, 26(1):62-65. |
CHEN Zhaohui, LIU Qianqian, PAN Hao, et al. Factors affecting shape of dimensionless fluid production index curve[J]. Fault-Block Oil & Gas Field, 2019, 26(1):62-65. | |
[17] | 高文君, 殷瑞, 高能, 等. 新型分流量解析方程的建立与应用[J]. 新疆石油地质, 2021, 42(2):179-187. |
GAO Wenjun, YIN Rui, GAO Neng, et al. Establishment and application of a new analytical fractional flow equation[J]. Xinjiang Petroleum Geology, 2021, 42(2):179-187. | |
[18] | 张金庆. 水驱曲线的进一步理论探讨及童氏图版的改进[J]. 中国海上油气, 2019, 31(1):86-93. |
ZHANG Jinqing. A further theoretical discussion on water flooding curve and improvement of Tong’s chart[J]. China Offshore Oil and Gas, 2019, 31(1):86-93. | |
[19] | 杨明强, 高文君, 刘军辉. 采出程度与含水率和地层压力双因素数学模型及应用[J]. 长江大学学报(自然科学版), 2020, 17(6):28-36. |
YANG Mingqiang, GAO Wenjun, LIU Junhui. The two-factor mathematical model of recovery percent with both water cut and formation pressure and its application[J]. Journal of Yangtze University(Natural Science Edition), 2020, 17(6):28-36. | |
[20] | 高文君, 铁麒, 郑巍, 等. 水驱油藏见水后Welge方程的确定及应用[J]. 新疆石油地质, 2022, 43(1):79-84. |
GAO Wenjun, TIE Qi, ZHENG Wei, et al. Determination and application of Welge equation for reservoirs after water breakthrough[J]. Xinjiang Petroleum Geology, 2022, 43(1):79-84. | |
[21] | 朱冰静, 朱宪辰. 预测原理与方法[M]. 上海: 交通大学出版社, 1991:64-109. |
ZHU Bingjing, ZHU Xianchen. Prediction principle and method[M]. Shanghai: Jiaotong University Press, 1991:64-109. | |
[22] |
高文君, 徐君. 常用水驱特征曲线理论研究[J]. 石油学报, 2007, 28(3):89-92.
doi: 10.7623/syxb200703017 |
GAO Wenjun, XU Jun. Theoretical study on common water-drive characteristic curves[J]. Acta Petrolei Sinica, 2007, 28(3):89-92.
doi: 10.7623/syxb200703017 |
|
[23] | 高文君, 宋成元, 付春苗, 等. 经典水驱油理论对应水驱特征曲线研究[J]. 新疆石油地质, 2014, 35 (3):307-310. |
GAO Wenjun, SONG Chengyuan, FU Chunmiao, et al. A study of water-drive type curves corresponding to the classical theories for water displacing oil[J]. Xinjiang Petroleum Geology, 2014, 35(3):307-310. | |
[24] | 宋兆杰, 李治平, 赖枫鹏, 等. 高含水期油田水驱特征曲线关系式的理论推导[J]. 石油勘探与开发, 2013, 40(2):201-208. |
SONG Zhaojie, LI Zhiping, LAI Fengpeng, et al. Derivation of water flooding characteristic curve for high water-cut oilfields[J]. Petroleum Exploration and Development, 2013, 40(2):201-208. | |
[25] | 柳誉剑, 王新海, 杜志华. 一种新型水驱特征曲线关系式的理论推导[J]. 中国科技论文, 2014, 9(6):734-738. |
LIU Yujian, WANG Xinhai, DU Zhihua. Theoretical derivation of a new water flooding characteristic curve relationship[J]. China Science Paper, 2014, 9(6):734-738. | |
[26] |
崔传智, 徐建鹏, 王端平. 特高含水阶段新型水驱特征曲线[J]. 石油学报, 2015, 36(10):1267-1271.
doi: 10.7623/syxb201510009 |
CUI Chuanzhi, XU Jianpeng, WANG Duanping. A new water flooding characteristic curve at ultra-high water cut stage[J]. Acta Petrolei Sinica, 2015, 36(10):1267-1271.
doi: 10.7623/syxb201510009 |
|
[27] | 门海文, 张静, 魏海军, 等. 油气藏产量旋回泛函数学模型的建立及应用[J]. 新疆石油地质, 2023, 44(3):365-374. |
MEN Haiwen, ZHANG Jing, WEI Haijun, et al. Establishment and application of functional mathematical model for production cycle of oil and gas reservoirs[J]. Xinjiang Petroleum Geology, 2023, 44(3):365-374. | |
[28] | 高文君, 刘致远, 薛龙龙. 利用反向推理方法确定水驱特征曲线渗流方程[J]. 断块油气田, 2020, 27(4):478-483. |
GAO Wenjun, LIU Zhiyuan, XUE Longlong. Determination of seepage equation of water drive characteristic curve by reverse derivation method[J]. Fault-Block Oil & Gas Field, 2020, 27(4):478-483. |
[1] | 吉斐, 孙鑫鑫, 张琦. 新型产量递减方程的建立及渗流理论基础——以吐哈油田非常规油藏为例[J]. 新疆石油地质, 2024, 45(6): 696-702. |
[2] | 支东明, 李建忠, 陈旋, 杨帆, 刘俊田, 林霖. 吐哈探区深层油气勘探进展及潜力评价[J]. 新疆石油地质, 2023, 44(3): 253-264. |
[3] | 刘锋, 赵红静, 金颖, 甘应星, 曾雁, 温旺彪, 徐桂芳. 吐哈盆地胜北洼陷中—下侏罗统致密油烃源岩评价及油源对比[J]. 新疆石油地质, 2023, 44(3): 277-288. |
[4] | 周港, 程甜, 李杰, 陈安清, 李富祥, 徐慧, 徐胜林. 胜北洼陷三间房组致密储集层成岩作用及孔隙演化[J]. 新疆石油地质, 2023, 44(3): 289-298. |
[5] | 肖志朋, 齐桓, 张艺桢, 李宜强, 姚帅旗, 刘通. 葡北油田三间房组油藏天然气重力驱特征及影响因素[J]. 新疆石油地质, 2023, 44(3): 334-340. |
[6] | 万海乔, 王盛, 刘学良. 低孔低渗稠油油藏注水增能效果影响因素[J]. 新疆石油地质, 2023, 44(3): 347-351. |
[7] | 朱永贤, 姚帅旗, 张彦斌, 韩继凡, 赵瑞明. 稀油油藏密闭取心流体饱和度校正方法[J]. 新疆石油地质, 2023, 44(3): 359-364. |
[8] | 石楠, 刘源, 冷玥, 文一华, 潘海峰, 孙博, 王兵. 基于低频模型优化的相控地质统计学反演方法及应用[J]. 新疆石油地质, 2023, 44(3): 375-382. |
[9] | 李婧, 范晖, 刘春茹, 杨芳. 新型油水相渗数学模型的建立及应用[J]. 新疆石油地质, 2023, 44(1): 70-75. |
[10] | 陈旋, 王居峰, 肖冬生, 刘俊田, 苟红光, 张华, 林霖, 李宏伟. 台北凹陷下侏罗统致密砂岩气成藏条件与勘探方向[J]. 新疆石油地质, 2022, 43(5): 505-512. |
[11] | 高文君, 铁麒, 郑巍, 汤欣. 水驱油藏见水后Welge方程的确定及应用[J]. 新疆石油地质, 2022, 43(1): 79-84. |
[12] | 高文君, 殷瑞, 高能, 盛寒, 高志江. 新型分流量解析方程的建立与应用[J]. 新疆石油地质, 2021, 42(2): 179-187. |
[13] | 梁世君. 吐哈探区油气勘探成果及潜力[J]. 新疆石油地质, 2020, 41(6): 631-641. |
[14] | 黄蝶芳, 姜萌蕾, 邵满军, 林霖, 程甜, 李成明, 刘俊田. 吐哈盆地北部山前带构造样式及演化特征[J]. 新疆石油地质, 2020, 41(6): 651-657. |
[15] | 张华, 康积伦, 王兴刚, 李宏伟, 贾雪丽, 周亚东. 吐哈盆地台北凹陷低饱和度油藏特征及其成因[J]. 新疆石油地质, 2020, 41(6): 685-691. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||