新疆石油地质 ›› 2025, Vol. 46 ›› Issue (2): 172-180.doi: 10.7657/XJPG20250206

• 油气勘探 • 上一篇    下一篇

鄂尔多斯盆地北部与西南部地区二叠系山1段可动流体差异分析

王雯清1a(), 彭磊2, 石华强3, 侯瑞2, 高辉1b(), 王琛1b, 李腾1b   

  1. 1.西安石油大学 a.地球科学与工程学院; b.石油工程学院,西安 710065
    2.中国石油 长庆油田分公司 天然气评价项目部,甘肃 庆阳 745000
    3.中国石油 长庆油田分公司 油气工艺研究院,西安 710018
  • 收稿日期:2024-07-01 修回日期:2024-10-23 出版日期:2025-04-01 发布日期:2025-03-26
  • 通讯作者: 高辉(1979-),男,陕西渭南人,教授,油气田开发工程,(Tel)13572244837(Email)ghtopsun1@163.com
  • 作者简介:王雯清(1999-),女,陕西西安人,硕士研究生,石油地质,(Tel)15197263179(Email)w1701310532@163.com
  • 基金资助:
    陕西省自然科学基金(2024JC-YBMS-256)

Movable Fluid Differences in Permian Shan-1 Member Reservoirs in Northern and Southwestern Parts of Ordos Basin

WANG Wenqing1a(), PENG Lei2, SHI Huaqiang3, HOU Rui2, GAO Hui1b(), WANG Chen1b, LI Teng1b   

  1. 1. Xi’an Shiyou University, a. School of Earth Sciences and Engineering; b. School of Petroleum Engineering, Xi’an, Shaanxi 710065, China
    2. Natural Gas Evaluation Project Department, Changqing Oilfield Company, PetroChina, Qingyang, Gansu 745000, China
    3. Research Institute of Oil and Gas Technology, Changqing Oilfield Company, PetroChina, Xi’an, Shaanxi 710018, China
  • Received:2024-07-01 Revised:2024-10-23 Online:2025-04-01 Published:2025-03-26

摘要: 储集层物性、岩石矿物组成以及微观孔隙结构是控制致密砂岩储集层可动流体的关键。为揭示鄂尔多斯盆地北部地区苏里格气田与西南部地区庆阳气田山1段储集层可动流体特征差异,采用X射线衍射、电镜扫描、铸体薄片分析、高压压汞、核磁共振等多种手段,在明确储集层微观孔隙结构差异性的基础上,对2个地区山1段储集层的可动流体特征差异进行研究。结果表明:依据孔喉半径分布及物性可将2个地区孔隙结构划分为3类,其中,Ⅰ类孔隙结构较发育,不同孔径范围均有可动流体赋存,可动流体含量受分选系数影响显著;Ⅱ类孔隙结构孔喉分布不均,可动流体含量受孔喉中值半径影响明显;Ⅲ类孔隙结构的孔径分布范围较小,可动流体多集中在小孔内,主要受黏土矿物含量影响。盆地北部地区苏里格气田山1段以Ⅱ类孔隙结构为主,可动流体含量为24.11%,可动流体含量受孔喉中值半径及伊利石含量影响;盆地西南部地区庆阳气田山1段以Ⅲ类孔隙结构为主,可动流体含量主要受孔隙度、渗透率及黏土矿物含量影响。

关键词: 鄂尔多斯盆地, 苏里格气田, 庆阳气田, 山1段, 致密砂岩储集层, 可动流体, 孔隙结构, 核磁共振

Abstract:

Physical properties, petrological properties, and microscopic pore structure are key factors controlling movable fluids in tight sandstone reservoirs. To reveal the differences of the movable fluids in the reservoirs of the Shan-1 member in the Sulige gas field, northern Ordos Basin and in the Qingyang gas field, southwestern Ordos Basin, by employing multiple techniques such as X-ray diffraction, scanning electron microscopy, cast thin section analysis, high-pressure mercury intrusion, and nuclear magnetic resonance (NMR), the differences in microscopic pore structure of reservoirs were clarified, and then the differences of movable fluids from the Shan-1 member reservoirs in the two areas were identified. The results show that the pore structures in the two parts can be classified into three types based on pore-throat radius distribution and reservoir physical properties. Type I pore structures are relatively well-developed, with movable fluids present across a wide range of pore radii, and the movable fluid content significantly sensitive to the sorting coefficient. Type II pore structures exhibit uneven pore-throat distribution, with the movable fluid content notably affected by the median pore-throat radius. Type III pore structures have a smaller range of pore radius distribution, with movable fluids mainly concentrated in small pores, and the movable fluid content primarily influenced by clay mineral content. In the Sulige gas field, the Shan-1 member is dominated by Type II pore structures, with a movable fluid content of 24.11%, which is influenced by permeability, median pore-throat radius, and illite content. In the Qingyang gas field, the Shan-1 member is dominated by Type III pore structures, with the movable fluid content mainly influenced by porosity, permeabilty, and clay mineral content.

Key words: Ordos Basin, Sulige gas field, Qingyang gas field, Shan-1 member, tight sandstone reservoir, movable fluid, pore structure, NMR

中图分类号: