| [1] |
廖广志, 王强, 王红庄, 等. 化学驱开发现状与前景展望[J]. 石油学报, 2017, 38(2):196-207.
doi: 10.7623/syxb201702007
|
|
LIAO Guangzhi, WANG Qiang, WANG Hongzhuang, et al. Chemical flooding development status and prospect[J]. Acta Petrolei Sinica, 2017, 38(2):196-207.
doi: 10.7623/syxb201702007
|
| [2] |
朱友益, 侯庆锋, 简国庆, 等. 化学复合驱技术研究与应用现状及发展趋势[J]. 石油勘探与开发, 2013, 40(1):90-96.
|
|
ZHU Youyi, HOU Qingfeng, JIAN Guoqing, et al. Current development and application of chemical combination flooding technique[J]. Petroleum Exploration and Development, 2013, 40(1):90-96.
|
| [3] |
刘哲宇, 李宜强, 冷润熙, 等. 孔隙结构对砾岩油藏聚表二元复合驱提高采收率的影响[J]. 石油勘探与开发, 2020, 47(1):129-139.
doi: 10.11698/PED.2020.01.12
|
|
LIU Zheyu, LI Yiqiang, LENG Runxi, et al. Effects of pore structure on surfactant/polymer flooding-based enhanced oil recovery in conglomerate reservoirs[J]. Petroleum Exploration and Development, 2020, 47(1):129-139.
|
| [4] |
常晓峰. 一种具有“盐响应”特性的两性离子聚合物增黏降滤失剂[J]. 天然气工业, 2024, 44(5):118-126.
|
|
CHANG Xiaofeng. A novel salt-responsive zwitterion polymer tackifying-fluid loss additive[J]. Natural Gas Industry, 2024, 44(5):118-126.
|
| [5] |
魏长清, 周丛丛. 二类油层含水率与聚合物驱时机关系图版建立及应用[J]. 特种油气藏, 2024, 31(6):106-113.
doi: 10.3969/j.issn.1006-6535.2024.06.013
|
|
WEI Changqing, ZHOU Congcong. Establishment and application of relationship charts between water content in Class Ⅱ oil reservoirs and the timing of polymer flooding[J]. Special Oil & Gas Reservoirs, 2024, 31(6):106-113.
|
| [6] |
LIU Zheyu, LI Yiqiang, CHEN Xin, et al. The optimal initiation timing of surfactant-polymer flooding in a waterflooded conglomerate reservoir[J]. SPE Journal, 2021, 26(4):2189-2202.
doi: 10.2118/205358-PA
|
| [7] |
温静. 辽河特高孔渗“双特高期”油藏聚合物+表面活性剂复合驱开发效果分析评价[J]. 特种油气藏, 2018, 25(6):109-113.
|
|
WEN Jing. Analysis and evaluation of the polymer-surfactant combination flooding performance for the ultra-high porosity-permeability reservoir within“dual ultra-high stage”,Liaohe oilfield[J]. Special Oil & Gas Reservoirs, 2018, 25(6):109-113.
|
| [8] |
李宜强, 张津, 潘登, 等. 高含水期微观剩余油赋存规律:以大港油田小集区块和港西区块为例[J]. 新疆石油地质, 2021, 42(4):444-449.
|
|
LI Yiqiang, ZHANG Jin, PAN Deng, et al. Occurrence laws of microscopic remaining oil in high water-cut reservoirs:A case study on Blocks Xiaoji and Gangxi in Dagang oilfield[J]. Xinjiang Petroleum Geology, 2021, 42(4):444-449.
|
| [9] |
刘洋, 夏惠芬, 张思琪, 等. 基于数字化孔隙模型的聚驱后微观剩余油定量表征[J]. 中国石油大学学报(自然科学版), 2023, 47(6):111-120.
|
|
LIU Yang, XIA Huifen, ZHANG Siqi, et al. Quantitative characterization of micro residual oil after polymer flooding based on digital pore model[J]. Journal of China University of Petroleum(Edition of Natural Science), 2023, 47(6):111-120.
|
| [10] |
张朝良, 李钧, 晏晓龙, 等. 砾岩储集层岩石矿物组成及其结构对聚合物表面活性剂二元复合驱提高采收率的影响[J]. 新疆石油地质, 2025, 46(2):231-239.
|
|
ZHANG Chaoliang, LI Jun, YAN Xiaolong, et al. Impacts of rock mineral composition and structure of conglomerate reservoirs on en- hanced oil recovery of polymer-surfactant binary flooding[J]. Xinjiang Petroleum Geology, 2025, 46(2):231-239.
|
| [11] |
周丛丛, 曹瑞波, 孙洪国, 等. 大庆油田二类B油层聚驱剖面动用规律及其改善[J]. 新疆石油地质, 2024, 45(5):567-573.
|
|
ZHOU Congcong, CAO Ruibo, SUN Hongguo, et al. Producing patterns and improvement of polymer flooding profile in Class Ⅱ B reservoir,Daqing oilfield[J]. Xinjiang Petroleum Geology, 2024, 45(5):567-573.
|
| [12] |
祝仰文, 郭拥军, 徐辉, 等. 耐温抗盐疏水缔合聚合物的制备与性能评价[J]. 油田化学, 2021, 38(2):317-323.
|
|
ZHU Yangwen, GUO Yongjun, XU Hui, et al. Preparation and performance evaluation of hydrophobically associating polymer with temperature resistance and salt tolerance[J]. Oilfield Chemistry, 2021, 38(2):317-323.
|
| [13] |
杨开吉, 张颖, 魏强, 等. 海上油田开发用抗温抗盐乳液聚合物研制与性能评价[J]. 石油钻探技术, 2024, 52(4):118-127.
|
|
YANG Kaiji, ZHANG Ying, WEI Qiang, et al. Development and performance evaluation of emulsion polymer with temperature resistance and salt resistance used in offshore oilfield development[J]. Petroleum Drilling Techniques, 2024, 52(4):118-127.
|
| [14] |
姜维东, 张健, 唐晓东. 渤海油田驱油用聚合物线团尺寸与岩石孔喉配伍性研究[J]. 油田化学, 2012, 29(4):446-451.
|
|
JIANG Weidong, ZHANG Jian, TANG Xiaodong. Compatibility of clew dimension of flooding polymer and rock pore throat in Bohai oilfield[J]. Oilfield Chemistry, 2012, 29(4):446-451.
|
| [15] |
LIU Zheyu, LI Yiqiang, LV Jianrong, et al. Optimization of polymer flooding design in conglomerate reservoirs[J]. Journal of Petroleum Science and Engineering, 2017, 152:267-274.
doi: 10.1016/j.petrol.2017.03.010
|
| [16] |
MAGHZI A, KHARRAT R, MOHEBBI A, et al. The impact of silica nanoparticles on the performance of polymer solution in presence of salts in polymer flooding for heavy oil recovery[J]. Fuel, 2014, 123:123-132.
doi: 10.1016/j.fuel.2014.01.017
|
| [17] |
HU Zhongliang, HARUNA M, GAO Hui, et al. Rheological properties of partially hydrolyzed polyacrylamide seeded by nanoparticles[J]. Industrial & Engineering Chemistry Research, 2017, 56(12):3456-3463.
doi: 10.1021/acs.iecr.6b05036
|
| [18] |
王满学, 何静, 赵小平, 等. 纳米SiO2对聚合物FRSP-1乳液黏度特性影响[J]. 西南石油大学学报(自然科学版), 2022, 44(2):168-176.
doi: 10.11885/j.issn.1674-5086.2020.10.19.02
|
|
WANG Manxue, HE Jing, ZHAO Xiaoping, et al. Effect of nano-silica on the viscosity characteristics of polymer FRSP-1 solution[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2022, 44(2):168-176.
|
| [19] |
贾寒, 田子豪, 黄维安. 两亲SiO2纳米颗粒的制备及提升聚合物性能[J]. 实验室研究与探索, 2022, 41(4):17-20.
|
|
JIA Han, TIAN Zihao, HUANG Weian. Preparation of amphiphilic SiO2 nanoparticles and improvement of the polymer properties[J]. Research and Exploration in Laboratory, 2022, 41(4):17-20.
|
| [20] |
唐文越, 罗宇峰, 王君, 等. 纳米颗粒对聚合物纳米流体性能的影响[R]. 南宁: 第33届全国天然气学术年会, 2023.
|
|
TANG Wenyue, LUO Yufeng, WANG Jun, et al. Effect of nanoparticles on properties of polymer nanofluids[R]. Nanning: Proceedings of the 33rd National Natural Gas Annual Conference, 2023.
|
| [21] |
高文彬, 李宜强, 何书梅, 等. 基于荧光薄片的剩余油赋存形态分类方法[J]. 石油学报, 2020, 41(11):1406-1415.
doi: 10.7623/syxb202011010
|
|
GAO Wenbin, LI Yiqiang, HE Shumei, et al. Classification method of occurrence mode of remaining oil based on fluorescence thin sections[J]. Acta Petrolei Sinica, 2020, 41(11):1406-1415.
doi: 10.7623/syxb202011010
|
| [22] |
CAO Han, LI Yiqiang, GAO Wenbin, et al. Experimental investigation on the effect of interfacial properties of chemical flooding for enhanced heavy oil recovery[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2023, 677:132335.
doi: 10.1016/j.colsurfa.2023.132335
|
| [23] |
GBADAMOSI A O, JUNIN R, MANAN M A, et al. Recent advances and prospects in polymeric nanofluids application for enhanced oil recovery[J]. Journal of Industrial and Engineering Chemistry, 2018, 66:1-19.
doi: 10.1016/j.jiec.2018.05.020
|
| [24] |
SARSENBEKULY B, KANG Wanli, YANG Hongbin, et al. Evaluation of rheological properties of a novel thermo-viscosifying functional polymer for enhanced oil recovery[J]. Colloids and Surfaces A, 2017, 532:405-410.
doi: 10.1016/j.colsurfa.2017.04.053
|