[1] |
ZAVALA C, 潘树新. 异重流成因和异重岩沉积特征[J]. 岩性油气藏, 2018, 30(1):1-18.
|
|
ZAVALA C, PAN Shuxin. Hyperpycnal flows and hyperpycnites:origin and distinctive characteristics[J]. Lithologic Reservoirs, 2018, 30(1):1-18.
|
[2] |
田军, 王清华, 杨海军, 等. 塔里木盆地油气勘探历程与启示[J]. 新疆石油地质, 2021, 42(3):272-282.
|
|
TIAN Jun, WANG Qinghua, YANG Haijun, et al. Petroleum exploration history and enlightenment in Tarim basin[J]. Xinjiang Petroleum Geology, 2021, 42(3):272-282.
|
[3] |
周新平, 何青, 刘江艳, 等. 鄂尔多斯盆地三叠系延长组7段深水碎屑流沉积特征及成因[J]. 石油与天然气地质, 2021, 42(5):1063-1 077.
|
|
ZHOU Xinping, HE Qing, LIU Jiangyan, et al. Features and origin of deep-water debris flow deposits in the Triassic Chang 7 member,Ordos basin[J]. Oil & Gas Geology, 2021, 42(5):1063-1 077.
|
[4] |
MULDER T, SYVITSKI J P M, MIGEON S, et al. Marine hyperpycnal flows:initiation,behavior and related deposits. A review[J]. Marine and Petroleum Geology, 2003, 20(6/7/8):861-882.
doi: 10.1016/j.marpetgeo.2003.01.003
|
[5] |
NAKAJIMA T. Hyperpycnites deposited 670 km away from river mouths in the central Japan sea[J]. Journal of Sedimentary Research, 2006, 76(1):59-72.
|
[6] |
ZAVALA C, PONCE J, DRITTANTI D et al. Ancient lacustrine hyperpycnites:a depositional model from a case study in the Rayoso formation (Cretaceous) of west-central Argentina[J]. Journal of Sedimentary Research, 2006, 76(1):41-59.
doi: 10.2110/jsr.2006.12
|
[7] |
ZHOU Lihong, SUN Zhihua, TANG Ge, et al. Pliocene hyperpycnal flow and its sedimentary pattern in D block of Rakhine basin in bay of Bengal[J]. Petroleum Exploration and Development, 2020, 47(2):318-330.
doi: 10.1016/S1876-3804(20)60049-0
|
[8] |
CHIANG C S, YU H S. Evidence of hyperpycnal flows at the head of the meandering Kaoping canyon off SW Taiwan[J]. Geo-Marine Letters, 2008, 28(3):171-179.
doi: 10.1007/s00367-007-0099-6
|
[9] |
MULDER T, MIGEON S, SAVOYE B, et al. Inversely graded turbidite sequences in the deep Mediterranean:a record of deposits from flood-generated turbidity currents[J]. Geo-Marine Letters, 2001, 21(2):86-93.
doi: 10.1007/s003670100071
|
[10] |
MUTTI E, TINTERRI R, BENEVELLI G, et al. Deltaic,mixed and turbidite sedimentation of ancient foreland basins[J]. Marine and Petroleum Geology, 2003, 20(6/7/8):633-655.
|
[11] |
GUO Jingxiang, JIANG Zaixing, XIE Xiangyang, et al. Deep-lacustrine sediment gravity flow channel-lobe complexes on a stepped slope:an example from the Chengbei low uplift,Bohai Bay basin,East China[J]. Marine and Petroleum Geology, 2021, 124(1):1-27.
|
[12] |
SOYINKA O, SLATT R M. Identification and micro-stratigraphy of hyperpycnites and turbidites in Cretaceous Lewis shale,Wyoming[J]. Sedimentology, 2008, 55(5):1117-1 133.
|
[13] |
ZAVALA C M, ARCURI M, MEGLIO M D et al. A genetic facies tract for the analysis of sustained hyperpycnal flow deposits. Sediment transfer from shelf to deep water:revisiting the delivery system[J]. AAPG, 2011, 61:31-51.
|
[14] |
范家骅. 异重流交界面波动失稳条件[J]. 水利学报, 2010, 41(7):849-855.
|
|
FAN Jiahua. Interfacial instability in density currents[J]. Shuili Xuebao, 2010, 41(7):849-855.
|
[15] |
王燕. 黄河口高浓度泥沙异重流过程:现场观测与数值模拟[D]. 山东青岛: 中国海洋大学, 2012:19-90.
|
|
WANG Yan. Process of high-concentrated sediment hyperpycnal flow at the Huanghe river mouth:in-situ observation and numerical simulation[D]. Qingdao, Shandong: Ocean University of China, 2012:19-90.
|
[16] |
杨田, 操应长, 王艳忠, 等. 异重流沉积动力学过程及沉积特征[J]. 地质评论, 2015, 61(1):23-33.
|
|
YANG Tian, CAO Yingchang, WANG Yanzhong, et al. Sediment dynamics process and sedimentary characteristics of hyperpycnal flows[J]. Geological Review, 2015, 61(1):23-33.
|
[17] |
唐武, 王英民, 仲米虹, 等. 异重流研究进展综述[J]. 海相油气地质, 2016, 21(2):47-56.
|
|
TANG Wu, WANG Yingmin, ZHONG Mihong, et al. Review of hyperpycnal flow[J]. Marine Origin Petroleum Geology, 2016, 21(2):47-56.
|
[18] |
栾国强, 董春梅, 林承焰, 等. 异重流发育条件、演化过程及沉积特征[J]. 石油与天然气地质, 2018, 39(3):438-453.
|
|
LUAN Guoqiang, DONG Chunmei, LIN Chengyan, et al. Development conditions,evolution process and depositional features of hyperpycnal flow[J]. Oil & Gas Geology, 2018, 39(3):438-453.
|
[19] |
杨仁超, 金之钧, 孙冬胜, 等. 鄂尔多斯晚三叠世湖盆异重流沉积新发现[J]. 沉积学报, 2015, 33(1):10-20.
|
|
YANG Renchao, JIN Zhijun, SUN Dongsheng, et al. Discovery of hyperpycnal flow deposits in the Late Triassic Lacustrine Ordos basin[J]. Acta Sedimentologica Sinica, 2015, 33(1):10-20.
|
[20] |
周立宏, 陈长伟, 韩国猛, 等. 断陷湖盆异重流沉积特征与分布模式:以歧口凹陷板桥斜坡沙一下亚段为例[J]. 中国石油勘探, 2018, 23(4):11-20.
doi: 10.3969/j.issn.1672-7703.2018.04.002
|
|
ZHOU Lihong, CHEN Changwei, HAN Guomeng, et al. Sedimentary characteristics and distribution patterns of hyperpycnal flow in rifted lacustrine basins:a case study on lower Es1 of Banqiao slope in Qikou sag[J]. China Petroleum Exploration, 2018, 23(4):11-20.
doi: 10.3969/j.issn.1672-7703.2018.04.002
|
[21] |
金杰华, 操应长, 王健, 等. 涠西南凹陷陡坡带流一段上亚段异重流沉积新发现[J]. 地学前缘, 2019, 26(4):250-258.
doi: 10.13745/j.esf.sf.2019.5.16
|
|
JIN Jiehua, CAO Yingchang, WANG Jian, et al. New discovery of hyperpycnal flow deposits in the Elx 1 section of the steep slope belt in the Weixinan sag[J]. Earth Science Frontiers, 2019, 26(4):250-258.
doi: 10.13745/j.esf.sf.2019.5.16
|
[22] |
王家豪, 王华, 肖敦清, 等. 陆相断陷湖盆异重流与滑塌型重力流沉积辨别[J]. 石油学报, 2020, 41(4):392-411.
doi: 10.7623/syxb202004002
|
|
WANG Jiahao, WANG Hua, XIAO Dunqing, et al. Differentiation between hyperpycnal flow deposition and slump-induced gravity flow deposition in terrestrial rifted lacustrine basin[J]. Acta Petrolei Sinica, 2020, 41(4):392-411.
doi: 10.7623/syxb202004002
|
[23] |
李国会, 李世银, 李会元, 等. 塔里木盆地中部走滑断裂系统分布格局及其成因[J]. 天然气工业, 2021, 41(3):30-37.
|
|
LI Guohui, LI Shiyin, LI Huiyuan, et al. Distribution pattern and formation mechanism of the strike-slip fault system in the central Tarim basin[J]. Natural Gas Industry, 2021, 41(3):30-37.
|
[24] |
贾承造. 塔里木盆地中新生代构造特征与油气[M]. 北京: 石油工业出版社, 2004.
|
|
JIA Chengzao. The Mesozoic and Cenozoic tectonic characteristics and petroleum[M]. Beijing: Petroleum Industry Press, 2004.
|
[25] |
何登发, 贾承造, 李德生, 等. 塔里木多旋回叠合盆地的形成与演化[J]. 石油与天然气地质, 2005, 26(1):64-77.
|
|
HE Dengfa, JIA Chengzao, LI Desheng, et al. Formation and evolution of polycyclic superimposed Tarim basin[J]. Oil & Gas Geology, 2005, 26(1):64-77.
|
[26] |
韩剑发, 邬光辉, 杨海军, 等. 塔里木盆地塔中隆起凝析气藏类型与成因[J]. 天然气工业, 2021, 41(7):24-32.
|
|
HAN Jianfa, WU Guanghui, YANG Haijun, et al. Type and genesis of condensate gas reservoir in the Tazhong uplift of the Tarim basin[J]. Natural Gas Industry, 2021, 41(7):24-32.
|
[27] |
贾承造, 马德波, 袁敬一, 等. 塔里木盆地走滑断裂构造特征、形成演化与成因机制[J]. 天然气工业, 2021, 41(8):81-91.
|
|
JIA Chengzao, MA Debo, YUAN Jingyi, et al. Structural characteristics,formation & evolution and genetic mechanisms of strike-slip faults in the Tarim basin[J]. Natural Gas Industry, 2021, 41(8):81-91.
|
[28] |
唐武, 王英民, 袁文芳, 等. 桑塔木地区三叠系层序地层特征及有利区带预测[J]. 西安石油大学学报(自然科学版), 2013, 28(2):1-10.
|
|
TANG Wu, WANG Yingmin, YUAN Wenfang, et al. Sequence stratigraphic characteristics and favorable hydrocarbon accumulation prediction of Triassic in Sangtamu area[J]. Journal of Xi’an Shiyou University(Natural Science Edition), 2013, 28(2):1-10.
|
[29] |
仲米虹, 唐武. 前陆盆地隆后坳陷区湖底扇沉积特征及主控控因素:以塔北轮南地区三叠系为例[J]. 岩性油气藏, 2018, 30(5):18-28.
|
|
ZHONG Mihong, TANG Wu. Sedimentary characteristics and controlling factors of sublacustrine fans in backbulge zone of foreland basin:Triassic in Lunnan area,Tarim basin[J]. Lithologic Reservoirs, 2018, 30(5):18-28.
|
[30] |
MULDER T, MIGEON S, SAVOYE B, et al. Inversely graded turbidite sequences in the deep Mediterranean:a record of deposits from flood-generated turbidity current?A reply[J]. Geo-Marine Letters, 2002, 22(2):112-120.
doi: 10.1007/s00367-002-0096-8
|
[31] |
方大钧, 沈忠悦, 王朋岩. 塔里木地块古地磁数据表[J]. 浙江大学学报(理学版), 2001, 28(1):92-99.
|
|
FANG Dajun, SHEN Zhongyue, WANG Pengyan. Paleomagnetic data of Tarim block[J]. Journal of Zhejiang Univerisity(Science Edition), 2001, 28(1):92-99.
|
[32] |
WRIGHT L D, WISENAM W J, JR BORNHOLD B D, et al. Marine dispersal and deposition of Yellow River silts by gravity-driven underflows[J]. Nature, 1988, 332:629-632.
doi: 10.1038/332629a0
|
[33] |
WANG H J, BI N S, SAITO Y, et al. Recent changes in sediment delivery by the Huanghe (Yellow River) to sea:cause and environmental implications in its estuary[J]. Journal of Hydrology, 2010, 391(3/4):302-313.
doi: 10.1016/j.jhydrol.2010.07.030
|