新疆石油地质 ›› 2024, Vol. 45 ›› Issue (1): 1-12.doi: 10.7657/XJPG20240101
• 油气勘探 • 下一篇
罗丹婷1(), 罗静兰1, 邓超1(
), 年涛2, 韩剑发3, 程道解4, 袁龙4
收稿日期:
2023-09-29
修回日期:
2023-10-10
出版日期:
2024-02-01
发布日期:
2024-01-23
通讯作者:
邓超(1987-),男,江西武昌人,副教授,博士生导师,地震解释,(Tel)15210877145(Email)作者简介:
罗丹婷(1994-),女,陕西咸阳人,博士研究生,沉积学及地质学,(Tel)18801338079(Email)基金资助:
LUO Danting1(), LUO Jinglan1, DENG Chao1(
), NIAN Tao2, HAN Jianfa3, CHENG Daojie4, YUAN Long4
Received:
2023-09-29
Revised:
2023-10-10
Online:
2024-02-01
Published:
2024-01-23
摘要:
库车坳陷克拉苏构造带盐下白垩系巴什基奇克组储集层分布了一批高产、稳产的天然气藏群,其储集层为超深、高温、超压致密砂岩储集层,孔隙度越高,氯盐含量越高,储集层视电阻率越低,储集层中氯盐的分布严重影响流体识别,其对盐下致密砂岩物性的影响较明显。利用岩心观察、铸体薄片、扫描电镜、氯盐含量、常规测井曲线分析等,系统分析了库车坳陷盐下白垩系巴什基奇克组储集层氯盐的分布特征。根据氯盐含量、电阻率、氯盐来源等的差异,提出盐下储集层氯盐分布具有顶渗、侧渗和局部封存3种模式。顶渗模式与侧渗模式的电阻率仅受氯盐含量的影响,顶渗模式储集层氯盐含量呈垂向分带特征,随氯盐含量的降低,电阻率升高;侧渗模式储集层氯盐含量呈横向分带特征,电阻率自构造带边缘向中心表现出由高到低再升高的趋势;局部封存模式电阻率受应力和氯盐含量的共同影响,氯盐含量分布具有偶发性,电阻率变化幅度大。根据测井响应特征划分了各模式的分布段序列,顶渗模式自上而下发育盐层段、泥岩封隔段、饱和氯盐强影响段、未饱和氯盐强影响段、未饱和氯盐影响过渡段和氯盐未影响段;侧渗模式在顶渗模式基础上多发育过饱和氯盐影响段;局部封存模式从上到下划分为盐层段、泥岩封隔段、强挤压应力氯盐未影响段、氯盐应力混合影响段和氯盐应力未影响段。
中图分类号:
罗丹婷, 罗静兰, 邓超, 年涛, 韩剑发, 程道解, 袁龙. 库车坳陷深层盐下白垩系储集层氯盐分布模式及意义[J]. 新疆石油地质, 2024, 45(1): 1-12.
LUO Danting, LUO Jinglan, DENG Chao, NIAN Tao, HAN Jianfa, CHENG Daojie, YUAN Long. Distribution Patterns and Significance of Salt in Deep Cretaceous Subsalt Reservoirs in Kuqa Depression,Tarim Basin[J]. Xinjiang Petroleum Geology, 2024, 45(1): 1-12.
[1] |
万桂梅, 汤良杰, 金文正, 等. 盐岩在库车拗陷中的作用[J]. 西南石油大学学报(自然科学版), 2008, 30(1):14-17.
doi: 10.3863/j.issn.1000-2634.2008.01.005 |
WAN Guimei, TANG Liangjie, JIN Wenzheng, et al. Function of salt rock in Kuqa sag[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2008, 30(1):14-17. | |
[2] | 徐珂, 张辉, 刘新宇, 等. 库车坳陷深层裂缝性储层现今地应力特征及其对天然气勘探开发的指导意义[J]. 油气地质与采收率, 2022, 29(2):34-45. |
XU Ke, ZHANG Hui, LIU Xinyu, et al. Current in-situ stress characteristics of deep fractured reservoirs in Kuqa depression and its guiding significance to natural gas exploration and development[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(2):34-45. | |
[3] | 潘荣, 朱筱敏, 王星星, 等. 深层有效碎屑岩储层形成机理研究进展[J]. 岩性油气藏, 2014, 26(4):73-80. |
PAN Rong, ZHU Xiaomin, WANG Xingxing, et al. Advancement on formation mechanism of deep effective clastic reservoir[J]. Lithologic Reservoirs, 2014, 26(4):73-80. | |
[4] | 陈全红, 阳怀忠, 赵红岩, 等. 南加蓬次盆北部盐下碎屑岩储层控制因素分析[J]. 中国海上油气, 2023, 35(2):53-64. |
CHEN Quanhong, YANG Huaizhong, ZHAO Hongyan, et al. Controlling factors of the subsalt clastic reservoir in the northern area of South Gabon sub-basin[J]. China Offshore Oil and Gas, 2023, 35(2):53-64. | |
[5] | 张世铭, 张小军, 张婷静, 等. 柴西狮子沟地区古近系下干柴沟组混积岩储层特征及影响因素分析[J]. 现代地质, 2017, 31(5):1059-1068. |
ZHANG Shiming, ZHANG Xiaojun, ZHANG Tingjing, et al. Reservoir characteristics of the Paleogene mixed carbonate-siliciclastic rock or succession and its influencing factors in the Shizigou area of the western Qaidam basin[J]. Geoscience, 2017, 31(5):1059-1068. | |
[6] | 杨海军, 李勇, 唐雁刚, 等. 塔里木盆地克拉苏盐下深层大气田的发现[J]. 新疆石油地质, 2019, 40(1):12-20. |
YANG Haijun, LI Yong, TANG Yan’gang, et al. Discovery of Kelasu subsalt deep large gas field,Tarim basin[J]. Xinjiang Petroleum Geology, 2019, 40(1):12-20. | |
[7] | 曾庆鲁, 莫涛, 赵继龙, 等. 7 000 m以深优质砂岩储层的特征、成因机制及油气勘探意义:以库车坳陷下白垩统巴什基奇克组为例[J]. 天然气工业, 2020, 40(1):38-47. |
ZENG Qinglu, MO Tao, ZHAO Jilong, et al. Characteristics,genetic mechanism and oil & gas exploration significance of high-quality sandstone reservoirs deeper than 7 000 m:A case study of the Bashijiqike formation of Lower Cretaceous in the Kuqa depression[J]. Natural Gas Industry, 2020, 40(1):38-47. | |
[8] | 王胜军, 唐永亮, 朱松柏, 等. 塔里木盆地库车坳陷北部典型露头剖面白垩系巴什基奇克组三段高分辨率层序地层特征[J]. 石油与天然气地质, 2022, 43(4):804-822. |
WANG Shengjun, TANG Yongliang, ZHU Songbai, et al. High-resolution sequence stratigraphy of the third member of Cretaceous Bashijiqike formation in a typical outcrop section,northern Kuqa Depression,Tarim basin[J]. Oil & Gas Geology, 2022, 43(4):804-822. | |
[9] |
杨海军, 李勇, 唐雁刚, 等. 塔里木盆地克深气田成藏条件及勘探开发关键技术[J]. 石油学报, 2021, 42(3):399-414.
doi: 10.7623/syxb202103012 |
YANG Haijun, LI Yong, TANG Yan’gang, et al. Accumulation conditions,key exploration and development technologies for Keshen gas field in Tarim basin[J]. Acta Petrolei Sinica, 2021, 42(3):399-414.
doi: 10.7623/syxb202103012 |
|
[10] | 袁龙, 信毅, 吴思仪, 等. 深层白垩系致密砂岩裂缝定性识别、参数建模与控制因素分析:以塔里木盆地库车坳陷克深地区白垩系巴什基奇克组储层为例[J]. 东北石油大学学报, 2021, 45(1):20-31. |
YUAN Long, XIN Yi, WU Siyi, et al. Research on qualitative identification,parameter modeling and control factors of cracks in deep Cretaceous tight sandstone:Taking the Cretaceous Bashijiqike formation reservoir in Keshen area,Kuqa depression,Tarim basin as an example[J]. Journal of Northeast Petroleum University, 2021, 45(1):20-31. | |
[11] |
袁龙, 章海宁, 信毅, 等. 致密气“三品质”测井综合评价方法研究[J]. 西南石油大学学报(自然科学版), 2022, 44(2):49-64.
doi: 10.11885/j.issn.1674-5086.2020.02.10.03 |
YUAN Long, ZHANG Haining, XIN Yi, et al. The comprehensive logging evaluation of“three qualities”of tight gas[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2022, 44(2):49-64. | |
[12] | 王招明. 塔里木盆地库车坳陷克拉苏盐下深层大气田形成机制与富集规律[J]. 天然气地球科学, 2014, 25(2):153-166. |
WANG Zhaoming. Formation mechanism and enrichment regularities of Kelasu subsalt deep large gas field in Kuqa depression,Tarim basin[J]. Natural Gas Geoscience, 2014, 25(2):153-166. | |
[13] |
高志勇, 周川闽, 冯佳睿, 等. 库车坳陷白垩系巴什基奇克组泥砾的成因机制与厚层状砂体展布[J]. 石油学报, 2016, 37(8):996-1010.
doi: 10.7623/syxb201608006 |
GAO Zhiyong, ZHOU Chuanmin, FENG Jiarui, et al. Mechanism and sedimentary environment of the muddy gravel concomitant with thick layer sandstone of Cretaceous in Kuqa depression[J]. Acta Petrolei Sinica, 2016, 37(8):996-1010.
doi: 10.7623/syxb201608006 |
|
[14] | 张惠良, 张荣虎, 杨海军, 等. 超深层裂缝-孔隙型致密砂岩储集层表征与评价:以库车前陆盆地克拉苏构造带白垩系巴什基奇克组为例[J]. 石油勘探与开发, 2014, 41(2):158-167. |
ZHANG Huiliang, ZHANG Ronghu, YANG Haijun, et al. Characterization and evalution of ultra-deep fracture-pore tight sandstone reservoirs:A case study of Cretaceous Bashijiqike formation in Kelasu tectonic zone in Kuqa foreland basin,Tarim,NW China[J]. Petroleum Exploration and Development, 2014, 41(2):158-167. | |
[15] |
王珂, 杨海军, 李勇, 等. 塔里木盆地库车坳陷北部构造带地质特征与勘探潜力[J]. 石油学报, 2021, 42(7):885-905.
doi: 10.7623/syxb202107005 |
WANG Ke, YANG Haijun, LI Yong, et al. Geological characteristics and exploration potential of the northern tectonic belt of Kuqa depression in Tarim basin[J]. Acta Petrolei Sinica, 2021, 42(7):885-905.
doi: 10.7623/syxb202107005 |
|
[16] | 魏国齐, 王俊鹏, 曾联波, 等. 克拉苏构造带盐下超深层储层的构造改造作用与油气勘探新发现[J]. 天然气工业, 2020, 40(1):20-30. |
WEI Guoqi, WANG Junpeng, ZENG Lianbo, et al. Structural reworking effects and new exploration discoveries of subsalt ultra-deep reservoirs in the Kelasu tectonic zone[J]. Natural Gas Industry, 2020, 40(1):20-30. | |
[17] | 能源, 李勇, 谢会文, 等. 库车前陆盆地盐下冲断带构造变换特征[J]. 新疆石油地质, 2019, 40(1):54-60. |
NENG Yuan, LI Yong, XIE Huiwen, et al. Tectonic transformation characteristics of subsalt thrust belts in Kuqa foreland basin[J]. Xinjiang Petroleum Geology, 2019, 40(1):54-60. | |
[18] |
赖锦, 肖露, 赵鑫, 等. 深层—超深层优质碎屑岩储层成因与测井评价方法:以库车坳陷白垩系巴什基奇克组为例[J]. 石油学报, 2023, 44(4):612-625.
doi: 10.7623/syxb202304004 |
LAI Jin, XIAO Lu, ZHAO Xin, et al. Genesis and logging evaluation of deep to ultra-deep high-quality clastic reservoirs:A case study of the Cretaceous Bashijiqike formation in Kuqa depression[J]. Acta Petrolei Sinica, 2023, 44(4):612-625. | |
[19] | 陈啸宇, 章成广, 朱雷, 等. 致密砂岩储层地应力对电阻率测井的影响[J]. 岩性油气藏, 2016, 28(1):106-110. |
CHEN Xiaoyu, ZHANG Chengguang, ZHU Lei, et al. Influence of ground stress on resistivity logging response in tight sandstone reservoir[J]. Lithologic Reservoirs, 2016, 28(1):106-110. | |
[20] | 王伟, 夏宏泉, 王谦. 高温高压下地应力对电阻率影响实验研究[J]. 测井技术, 2017, 41(6):642-647. |
WANG Wei, XIA Hongquan, WANG Qian. Experimental study of the stress effect on formation resistivity under high temperature and high pressure[J]. Well Logging Technology, 2017, 41(6):642-647. | |
[21] | 袁龙, 夏宏泉, 王谦, 等. 地应力对致密砂岩电阻率的影响机理及地应力校正电阻率模型的建立:以克深区块巴什基奇克组致密砂岩储层为例[J]. 长江大学学报(自然科学版), 2020, 17(6):1-8. |
YUAN Long, XIA Hongquan, WANG Qian, et al. Influence mechanism of in-situ stress on resistivity of tight sandstone and establishment of in-situ stress correction resistivity model:Taking the tight sandstone reservoir of Bashijiqike formation in Keshen block as an example[J]. Journal of Yangtze University(Natural Science Edition), 2020, 17(6):1-8. | |
[22] | 袁龙, 章海宁, 李国利, 等. 库车前陆盆地强挤压应力条件下的测井电阻率校正方法[J]. 石油地球物理勘探, 2018, 53(5):1085-1094. |
YUAN Long, ZHANG Haining, LI Guoli, et al. Logging resistivity correction under the strong extrusion stress condition in the Kuqa foreland basin[J]. Oil Geophysical Prospecting, 2018, 53(5):1085-1094. | |
[23] | 冯佳睿, 高志勇, 张宇航, 等. 库车坳陷大北克深井区白垩系储层含盐特征与分布规律[J]. 吉林大学学报(地球科学版), 2022, 52(1):38-54. |
FENG Jiarui, GAO Zhiyong, ZHANG Yuhang, et al. Salt-bearing characteristics and distribution of Cretaceous reservoirs of the Dabei and Keshen areas in the Kuqa depression[J]. Journal of Jilin University(Earth Science Edition), 2022, 52(1):38-54. | |
[24] | 张辉, 鞠玮, 徐珂, 等. 库车坳陷博孜气藏超深致密砂岩储集层现今地应力预测[J]. 新疆石油地质, 2023, 44(2):224-230. |
ZHANG Hui, JU Wei, XU Ke, et al. Prediction of present-day in-situ stress in ultra-deep tight sandstone reservoirs in Bozi gas reservoir,Kuqa depression[J]. Xinjiang Petroleum Geology, 2023, 44(2):224-230. | |
[25] | 蔡振忠, 徐珂, 张辉, 等. 基于地质工程一体化的超深井提速提产:以塔里木盆地库车坳陷为例[J]. 新疆石油地质, 2022, 43(2):206-213. |
CAI Zhenzhong, XU Ke, ZHANG Hui, et al. ROP improvement and production enhancement for ultra-deep wells based on geology-engineering integration:A case in Kuqa depression,Tarim basin[J]. Xinjiang Petroleum Geology, 2022, 43(2):206-213. | |
[26] | 吴健森, 孟耀庭, 潘月燕, 等. 亚临界水氧化技术处理高盐难降解有机废水研究进展[J]. 能源环境保护, 2022, 36(3):30-36. |
WU Jiansen, MENG Yaoting, PAN Yueyan, et al. Research progress in the treatment of refractory organic waste water with high salinity by subcritical water oxidation technology[J]. Energy Environmental Protection, 2022, 36(3):30-36. | |
[27] |
CHEN Zhong, ZHENG Zhijian, HE Chunlan, et al. Oily sludge treatment in subcritical and supercritical water:A review[J]. Journal of Hazardous Materials, 2022, 433:128761.
doi: 10.1016/j.jhazmat.2022.128761 |
[28] |
DAVOODI S, AL-SHARGABI M, WOOD D A, et al. Thermally stable and salt-resistant synthetic polymers as drilling fluid additives for deployment in harsh sub-surface conditions:A review[J]. Journal of Molecular Liquids, 2023, 371:121117.
doi: 10.1016/j.molliq.2022.121117 |
[29] |
MAO Hui, YANG Yan, ZHANG Hao, et al. A critical review of the possible effects of physical and chemical properties of subcritical water on the performance of water-based drilling fluids designed for ultra-high temperature and ultra-high pressure drilling applications[J]. Journal of Petroleum Science and Engineering, 2020, 187:106795.
doi: 10.1016/j.petrol.2019.106795 |
[30] |
DING Xin, LEI Yali, SHEN Zhenxing, et al. Experimental determination and modeling of the solubility of sodium chloride in subcritical water from (568 to 598) K and (10 to 25) MPa[J]. Journal of Chemical & Engineering Data, 2017, 62(10):3374-3390.
doi: 10.1021/acs.jced.7b00436 |
[31] | 叶菊梅, 刘微, 李天涯, 等. 基于Pitzer热力学模型的高盐废水体系NaCl-Na2SO4-H2O溶解度预测[J]. 辽宁石油化工大学学报, 2021, 41(5):32-37. |
YE Jumei, LIU Wei, LI Tianya, et al. Prediction of solubility of NaCl-Na2SO4-H2O in high salt wastewater by Pitzer thermodynamic model[J]. Journal of Liaoning Petrochemical University, 2021, 41(5):32-37. | |
[32] |
冯建伟, 赵力彬, 王焰东. 库车坳陷克深气田超深层致密储层产能控制因素[J]. 石油学报, 2020, 41(4):478-488.
doi: 10.7623/syxb202004010 |
FENG Jianwei, ZHAO Libin, WANG Yandong. Controlling factors for productivity of ultra-deep tight reservoirs in Keshen gas field,Kuqa depression[J]. Acta Petrolei Sinica, 2020, 41(4):478-488.
doi: 10.7623/syxb202004010 |
|
[33] | 朱传庆, 徐同, 邱楠生, 等. 塔里木盆地克拉苏构造带巴什基奇克组地层水化学特征及流体成因[J]. 地质学报, 2023, 97(1):250-261. |
ZHU Chuanqing, XU Tong, QIU Nansheng, et al. Chemical characteristics and fluid origin of formation water of Bashijiqike formation in Kelasu structure belt,Tarim basin[J]. Acta Geologica Sinica, 2023, 97(1):250-261. | |
[34] | POLICKY B R, IVERSON W P. Water resistivity from spontaneous potential logs in the Minnelusa formation,Powder River basin,Wyoming[C]. SPE Rocky Mountain Regional Meetin,Casper,Wyoming, 1988. |
[35] | HENRY J D, CUNNINGHAM W A. A new method for determination of formation water resistivity from the spontaneous potential curve[C]. Fall Meeting of the Society of Petroleum Engineers of AIME,Los Angeles,California, 1962. |
[1] | 毛锐, 赵磊, 申子明, 罗兴平, 陈山河, 冯程. 玛湖凹陷风城组碱性矿物特征及天然碱测井评价[J]. 新疆石油地质, 2023, 44(6): 667-673. |
[2] | 支东明, 李建忠, 陈旋, 杨帆, 刘俊田, 林霖. 吐哈探区深层油气勘探进展及潜力评价[J]. 新疆石油地质, 2023, 44(3): 253-264. |
[3] | 张辉, 鞠玮, 徐珂, 宁卫科, 尹国庆, 王志民, 于国栋. 库车坳陷博孜气藏超深致密砂岩储集层现今地应力预测[J]. 新疆石油地质, 2023, 44(2): 224-230. |
[4] | 张德梅, 段朝伟, 李高仁, 李永胜, 陆敬武, 林伟川. 华池—南梁油田长8油藏高阻水层解释方法[J]. 新疆石油地质, 2023, 44(1): 105-111. |
[5] | 陈平, 能源, 吴鲜, 黄诚, 王来源, 郭曼. 塔里木盆地顺北5号走滑断裂带分层分段特征及构造演化[J]. 新疆石油地质, 2023, 44(1): 33-42. |
[6] | 顾浩, 康志江, 尚根华, 张冬丽, 李红凯, 黄孝特. 超深层断控缝洞型油藏油井合理产能优化方法及应用[J]. 新疆石油地质, 2023, 44(1): 64-69. |
[7] | 魏军, 严宝年, 杜文博, 周晓峰, 周在华, 李铁锋, 谢菁钰. 酒泉盆地长沙岭构造带下沟组一段油藏圈闭特征及形成机理[J]. 新疆石油地质, 2022, 43(4): 379-386. |
[8] | 伍顺伟, 夏学领, 朱世杰. 玛北油田XIA72井断块百口泉组钙质砂砾岩成因[J]. 新疆石油地质, 2022, 43(4): 404-409. |
[9] | 牟立伟, 王刚, 罗兴平, 樊海涛, 林世均, 王国辉. 高矿化度钻井液侵入后储集层双侧向电阻率实验校正[J]. 新疆石油地质, 2022, 43(4): 474-478. |
[10] | 蔡振忠, 徐珂, 张辉, 王志民, 尹国庆, 刘新宇. 基于地质工程一体化的超深井提速提产——以塔里木盆地库车坳陷为例[J]. 新疆石油地质, 2022, 43(2): 206-213. |
[11] | 李枫凌, 徐士鹏, 刘涛, 卢志明, 李想, 艾尼·买买提. WTK油田白垩系低阻油层成因及流体识别方法[J]. 新疆石油地质, 2022, 43(2): 241-251. |
[12] | 李吉康, 孙致学, 谭涛, 郭臣, 谢爽, 郝聪. 深层缝洞型油藏烃气混相驱可行性及影响因素[J]. 新疆石油地质, 2021, 42(6): 714-719. |
[13] | 徐珂, 杨海军, 张辉, 王海应, 袁芳, 王朝辉, 李超. 克拉苏构造带博孜1气藏现今地应力场和高效开发[J]. 新疆石油地质, 2021, 42(6): 726-734. |
[14] | 田军. 塔里木盆地油气勘探历程与启示[J]. 新疆石油地质, 2021, 42(3): 272-282. |
[15] | 刘晶晶, 毛毳, 魏荷花, 权莲顺, 刘泽璇. 塔河油田奥陶系缝洞充填序列及其测井响应[J]. 新疆石油地质, 2021, 42(1): 46-52. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||