[1] |
钱门辉, 王绪龙, 黎茂稳, 等. 玛页1井风城组页岩含油性与烃类赋存状态[J]. 新疆石油地质, 2022, 43(6):693-703.
|
|
QIAN Menhui, WANG Xulong, LI Maowen, et al. Oil-bearing properties and hydrocarbon occurrence states of Fengcheng formation shale in Well Maye-1,Mahu sag[J]. Xinjiang Petroleum Geology, 2022, 43(6):693-703.
|
[2] |
吴建邦, 杨胜来, 李强, 等. 准噶尔盆地玛湖凹陷致密砂砾岩储层可动孔隙界限[J]. 大庆石油地质与开发, 2022, 41(6):167-174.
|
|
WU Jianbang, YANG Shenglai, LI Qiang, et al. Movable pore limits of tight glutenite reservoir in Mahu sag of Junggar basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2022, 41(6):167-174.
|
[3] |
宋嘉楠. 玛湖凹陷玛页1井区块风城组页岩油可动性影响因素及评价[D]. 北京: 中国石油大学(北京), 2021.
|
|
SONG Jia’nan. Influence factors and evaluation of mobility of the Fengcheng formation shale oil in the Maye 1 well block,Mahu sag[D]. Beijing: China University of Petroleum (Beijing), 2021.
|
[4] |
王继超, 崔鹏兴, 刘双双, 等. 不同孔隙结构页岩油储层可动流体分布特征[J]. 西安石油大学学报(自然科学版), 2023, 38(1):59-68.
|
|
WANG Jichao, CUI Pengxing, LIU Shuangshuang, et al. Distribution characteristics of movable fluid in shale oil reservoirs with different pore structures[J]. Journal of Xi’an Shiyou University(Natural Science Edition), 2023, 38(1):59-68.
|
[5] |
沈瑞, 覃建华, 熊伟, 等. 吉木萨尔芦草沟组页岩储层孔隙结构与流体可动性研究[J]. 中南大学学报(自然科学版), 2022, 53(9):3368-3386.
|
|
SHEN Rui, QIN Jianhua, XIONG Wei, et al. Study on pore structure and fluid mobility of shale oil in Jimsar Lucaogou formation[J]. Journal of Central South University(Science and Technology), 2022, 53(9):3368-3386.
|
[6] |
LI Jinbu, LU Shuangfang, CHEN Guohui, et al. A new method for measuring shale porosity with low-field nuclear magnetic resonance considering non-fluid signals[J]. Marine and Petroleum Geology, 2019, 102:535-543.
doi: 10.1016/j.marpetgeo.2019.01.013
|
[7] |
ZHANG Pengfei, LU Shuangfang, LI Junqian, et al. Petrophysical characterization of oil-bearing shales by low-field nuclear magnetic resonance (NMR)[J]. Marine and Petroleum Geology, 2018, 89:775-785.
|
[8] |
MITCHELL J, STANILAND J, CHASSAGNE R, et al. Quantitative in situ enhanced oil recovery monitoring using nuclear magnetic resonance[J]. Transport in Porous Media, 2012, 94:683-706.
|
[9] |
GUAN Ming, LIU Xiaoping, JIN Zhijun, et al. Quantitative characterization of various oil contents and spatial distribution in lacustrine shales:Insight from petroleum compositional characteristics derived from programed pyrolysis[J]. Marine and Petroleum Geology, 2022 138:105522.
|
[10] |
TIAN Hua, HE Kun, HUANG Yuhui, et al. Oil content and mobility in a shale reservoir in Songliao basin,northeast China:Insights from combined solvent extraction and NMR methods[J]. Fuel, 2024, 357:129678.
|
[11] |
谭锋奇, 马春苗, 黎宪坤, 等. 储层流体可动性在油田开发中的应用及展望[J]. 西南石油大学学报(自然科学版), 2024, 46(1):1-20.
doi: 10.11885/j.issn.1674-5086.2022.06.18.02
|
|
TAN Fengqi, MA Chunmiao, LI Xiankun, et al. Application and prospect of fluid mobility in oilfield development[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2024, 46(1):1-20.
|
[12] |
TIAN Weichao, LU Shuangfang, ZHANG Jun, et al. NMR characterization of fluid mobility in low-permeability conglomerates:An experimental investigation of spontaneous imbibition and flooding[J]. Journal of Petroleum Science & Engineering, 2022, 214:110483.
|
[13] |
WU Jianbang, YANG Shenglai, LI Qiang, et al. New insight into imbibition micromechanisms and scaling model in fossil hydrogen energy development of tight reservoirs based on NMR[J]. International Journal of Hydrogen Energy, 2024, 49:964-977.
|
[14] |
户海胜, 高阳, 单江涛, 等. 超临界CO2萃取致密砂砾岩中原油效果影响因素实验研究[J]. 油气藏评价与开发, 2021, 11(6):845-851.
|
|
HU Haisheng, GAO Yang, SHAN Jiangtao, et al. Experimental researches on factors influencing supercritical CO2 extraction effect of crude oil from tight sandy conglomerate[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(6):845-851.
|
[15] |
DU Daijun, PU Wanfen, JIN Fayang, et al. Experimental study on EOR by CO2 huff-n-puff and CO2 flooding in tight conglomerate reservoirs with pore scale[J]. Chemical Engineering Research & Design, 2020, 156:425-432.
|
[16] |
张本艳, 党文斌, 王少朋, 等. 鄂尔多斯盆地红河油田长8 储层致密砂岩油藏注CO2提高采收率[J]. 石油与天然气地质, 2016, 37(2):272-275.
|
|
ZHANG Benyan, DANG Wenbin, WANG Shaopeng, et al. CO2-EOR in Chang 8 tight sandstone reservoir of Honghe oilfield in Ordos basin[J]. Oil & Gas Geology, 2016, 37(2):272-275.
|
[17] |
胡宇. CO2吞吐在致密砾岩油藏中的提高采收率效果与机理研究[D]. 北京: 中国石油大学(北京), 2022.
|
|
HU Yu. The effect and mechanism of CO2 huff-n-puff on enhanced oil recovery in tight conglomerate reservoirs[D]. Beijing: China University of Petroleum (Beijing), 2022.
|
[18] |
朱钰青. 强非均质砾岩油藏CO2吞吐数学表征方法研究[D]. 北京: 中国石油大学(北京), 2022.
|
|
ZHU Yuqing. Research on mathematical characterization of CO2 huff and puff in strongly heterogeneous conglomerate reservoirs[D]. Beijing: China University of Petroleum (Beijing), 2022.
|
[19] |
孙大龙, 张广东, 彭旭, 等. CO2驱气溶性降混剂提高采收率机理实验[J]. 特种油气藏, 2022, 29(1):134-140.
doi: 10.3969/j.issn.1006-6535.2022.01.020
|
|
SUN Dalong, ZHANG Guangdong, PENG Xu, et al. Experiment on the mechanism of enhancing oil recovery by CO2 flooding with gas-soluble demixing agent[J]. Special Oil & Gas Reservoirs, 2022, 29(1):134-140.
|
[20] |
李岩, 张菂, 樊晓伊, 等. 低渗透砂砾岩油藏二氧化碳驱提高采收率[J]. 新疆石油地质, 2022, 43(1):59-65.
|
|
LI Yan, ZHANG Di, FAN Xiaoyi, et al. EOR of CO2 flooding in low-permeability sandy conglomerate reservoirs[J]. Xinjiang Petroleum Geology, 2022, 43(1):59-65.
|
[21] |
李浩楠, 宋平, 朱亚婷, 等. 玛湖致密砾岩注氮气驱机理及应用效果评价[J]. 西南石油大学学报(自然科学版), 2021, 43(5):203-211.
doi: 10.11885/j.issn.1674-5086.2021.03.23.02
|
|
LI Haonan, SONG Ping, ZHU Yating, et al. Mechanism and application effect evaluation of nitrogen flooding in Mahu tight conglomerate[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2021, 43(5):203-211.
|
[22] |
陈昊天. 砾岩油藏注二氧化碳开采波及规律实验研究[D]. 山东青岛: 中国石油大学(华东), 2019.
|
|
CHEN Haotian. Experimental studies on CO2 sweep efficiencies for conglomerate reservoirs[D]. Qingdao,Shandong: China University of Petroleum (East China), 2019.
|
[23] |
王亚, 葛丽珍, 路研, 等. 基于核磁共振驱替实验的低渗透砂岩流体可动性及剩余油赋存特征研究[J]. 油气地质与采收率, 2023, 30(6)22-31.
|
|
WANG Ya, GE Lizhen, LU Yan, et al. Study on fluid mobility and occurrence characteristics of remaining oil in low-permeability sandstone reservoirs based on nuclear magnetic resonance displacement experiments[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(6):22-31.
|