Xinjiang Petroleum Geology ›› 2022, Vol. 43 ›› Issue (5): 612-616.doi: 10.7657/XJPG20220515
• RESERVOIR ENGINEERING • Previous Articles Next Articles
LEI Zexuan(), XIN Xiankang(
), YU Gaoming, WANG Li
Received:
2022-07-24
Revised:
2022-08-29
Online:
2022-10-01
Published:
2022-09-22
Contact:
XIN Xiankang
E-mail:845768427@qq.com;465166954@qq.com
CLC Number:
LEI Zexuan, XIN Xiankang, YU Gaoming, WANG Li. Reservoir Production Performance Optimization Algorithm Based on Numerical Simulation[J]. Xinjiang Petroleum Geology, 2022, 43(5): 612-616.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | 李宜强, 张津, 潘登, 等. 高含水期微观剩余油赋存规律:以大港油田小集区块和港西区块为例[J]. 新疆石油地质, 2021, 42(4):444-449. |
LI Yiqiang, ZHANG Jin, PAN Deng, et al. Occurrence laws of microscopic remaining oil in high water-cut reservoirs:a case study on Blocks Xiaoji and Gangxi in Dagang oilfield[J]. Xinjiang Petroleum Geology, 2021, 42(4):444-449. | |
[2] | 高珍妮. 特高含水期水驱开发效果评价方法[D]. 北京: 中国石油大学(北京), 2019. |
GAO Zhenni. Evaluation method for water flooding development effect in extra high water cut period[D]. Beijing: China University of Petroleum(Beijing), 2019. | |
[3] | 陈省身. 杏六区薄差层基于相渗的水驱开发指标规律研究[D]. 黑龙江大庆: 东北石油大学, 2021. |
CHEN Xingshen. Study on the law of water drive development index based on relative permeability of thin and poor layers in Xing 6 area[D]. Heilongjiang: Northeast Petroleum University, 2021. | |
[4] | 李传亮, 王凤兰, 杜庆龙, 等. 砂岩油藏特高含水期的水驱特征[J]. 岩性油气藏, 2021, 33(5):163-171. |
LI Chuanliang, WANG Fenglan, DU Qinglong, et al. Water displacement rules of sandstone reservoirs at extra-high water-cut stage[J]. Lithologic Reservoirs, 2021, 33(5):163-171. | |
[5] | 梁爽. 大庆油田杏六区薄差层有效动用界限及技术政策界限研究[D]. 黑龙江大庆: 东北石油大学, 2014. |
LIANG Shuang. The thin and poor pay zones effective producing limitation and technology policy limitation research on Xing-6 blocks of Daqing oil field[D]. Daqing,Heilongjiang: Northeast Petroleum University, 2014. | |
[6] | 张国威. 非均质砂岩油藏注水开发矢量性特征及优化匹配研究[D]. 武汉: 中国地质大学, 2021. |
ZHANG Guowei. Research on optimal matching of vector characteristics in water-flooding heterogeneous sandstone reservoir[D]. Wuhan: China University of Geosciences, 2021. | |
[7] | 王九龙. 非均质厚油层挖潜剩余油有效驱动单元渗流理论研究及应用[D]. 北京: 北京科技大学, 2021. |
WANG Jiulong. Research and application of effective driving unitflow theory for tapping the potential of remaining oil in heterogeneous thick reservoir[D]. Beijing: University of Science and Technology Beijing, 2021. | |
[8] | 程晓军. 超深断溶体油藏油井见水特征及生产制度优化:以塔里木盆地顺北油田Z井为例[J]. 新疆石油地质, 2021, 42(5):554-558. |
CHENG Xiaojun. Characteristics of water breakthrough and optimization of production system of oil wells drilled in ultra-deep fault-karst reservoirs:a case study on Well Z in Shunbei oilfield,Tarim basin[J]. Xinjiang Petroleum Geology, 2021, 42(5):554-558. | |
[9] | 闫霞, 李阳, 姚军, 等. 基于改进单纯形梯度算法的油藏生产优化[J]. 油气地质与采收率, 2013, 20(3):65-67. |
YAN Xia, LI Yang, YAO Jun, et al. Reservoir production optimization method based on modified simplex gradient algorithm[J]. Petroleum Geology and Recovery Efficiency, 2013, 20(3):65-67. | |
[10] | 闫霞. 基于梯度逼真算法的油藏生产优化理论研究[D]. 山东青岛: 中国石油大学(华东), 2013. |
YAN Xia. Theoretical research of reservoir production optimization based on gradient approximation method[D]. Qingdao,Shandong: China University of Petroleum(East China), 2013. | |
[11] |
CHEN Chaohui, LI Gaoming, REYNOLDS A C. Robust constrained optimization of short-and long-term net present value for closed-loop reservoir management[J]. SPE Journal, 2012, 17(3):849-864.
doi: 10.2118/141314-PA |
[12] | SARMA P, CHEN W H. Applications of optimal control theory for efficient production optimisation of realistic reservoirs[R]. IPTC-12480-MS, 2008. |
[13] |
SARMA P, DURLOFSKY L J, AZIZ K, et al. Efficient real-time reservoir management using adjoint-based optimal control and model updating[J]. Computational Geosciences, 2006, 10(1):3-36.
doi: 10.1007/s10596-005-9009-z |
[14] | 边霞, 米良. 遗传算法理论及其应用研究进展[J]. 计算机应用研究, 2010, 27(7):2 425-2 429. |
BIAN Xia, MI Liang. Development on genetic algorithm theory and its applications[J]. Application Research of Computers, 2010, 27(7):2 425-2 429. | |
[15] | 杜丽, 吕利叶, 孙伟, 等. 一种适用于约束空间的拉丁超立方取点策略[J]. 机械设计与制造, 2021, 59(8):43-47. |
DU Li, LV Liye, SUN Wei, et al. An Latin hypercube sampling approach for constrained design space[J]. Machinery Design & Manufacture, 2021, 59(8):43-47. | |
[16] | 张青凤. 遗传算法在最优化问题中的应用研究[J]. 山西师范大学学报(自然科学版), 2014, 28(1):38-42. |
ZHANG Qingfeng. Research on application of genetic algorithm in optimization problem[J]. Journal of Shanxi Normal University(Natural Science Edition), 2014, 28(1):38-42. | |
[17] |
ZHAO Jinquan, ZHANG Chenlu. A probabilistic optimal power flow calculation method with Latin hypercube sampling[J]. Advanced Materials Research, 2014, 918:183-190.
doi: 10.4028/www.scientific.net/AMR.918.183 |
[18] | ZHAO Wei, CHEN Yangyang, LIU Jike. Reliability sensitivity analysis using axis orthogonal importance Latin hypercube sampling method[J]. Advances in Mechanical Engineering, 2019, 11(1):1-17. |
[19] | SUN Tianjian, SHI Junfeng, YU Xinghe. Adaptive simulated annealing genetic algorithm for optimizing injection-production parameters of steam flood well[J]. Advanced Materials Research, 2011, 1442:1 855-1 859. |
[20] | 郭彩杏, 郭晓金, 柏林江. 改进遗传模拟退火算法优化BP算法研究[J]. 小型微型计算机系统, 2019, 40(10):2 063-2 067. |
GUO Caixing, GUO Xiaojin, BO Linjiang. Research on improved BP algorithm for genetic simulated annealing algorithm[J]. Journal of Chinese Computer Systems, 2019, 40(10):2 063-2 067. | |
[21] | 张大科. 改进的自适应遗传算法的研究与应用[D]. 昆明: 昆明理工大学, 2019. |
ZHANG Dake. Research and application of improved adaptive genetic algorithm[D]. Kunming: Kunming University of Science and Technology, 2019. | |
[22] | 张宇. 多模型随机近似扰动算法的应用[J]. 化工管理, 2017, 32(32):68. |
ZHANG Yu. Application of multi-model stochastic approximate perturbation algorithm[J]. Chemical Enterprise Management, 2017, 32(32):68. | |
[23] | 万琦. 基于最优控制与SPSA算法的水驱油藏优化方法研究[D]. 成都: 西南石油大学, 2015. |
WAN Qi. Study on optimization method of water drive reservoir based on optimal control and SPSA algorithm[D]. Chengdu: Southwest Petroleum University, 2015. |
[1] | GU Hao, KANG Zhijiang, SHANG Genhua, ZHANG Dongli, LI Hongkai, HUANG Xiaote. Reasonable Productivity Optimization Methods and Application in Ultra-Deep Fault-Controlled Fractured-Vuggy Reservoirs [J]. Xinjiang Petroleum Geology, 2023, 44(1): 64-69. |
[2] | QIU Hao, WEN Min, WU Yi, XING Xuesong, MA Nan, LI Zhandong, GUO Tianzi. Water Control Experiments in Huizhou Buried-Hill Fractured Condensate Reservoirs in Nanhai Oilfield [J]. Xinjiang Petroleum Geology, 2023, 44(1): 84-92. |
[3] | YU Peirong, ZHENG Guoqing, SUN Futai, WANG Zhenlin. Simulation on Fracture Propagation During Hydraulic Fracturing in Horizontal Wells in Shale Reservoirs of Fengcheng Formation,Mahu Sag [J]. Xinjiang Petroleum Geology, 2022, 43(6): 750-756. |
[4] | WANG Fei, WU Baocheng, LIAO Kai, SHI Shanzhi, ZHANG Shicheng, LI Jianmin, SUO Jielin. Inversion of Fracture Parameters and Formation Pressure for Fractured Horizontal Wells in Shale Oil Reservoir Based on Soaking Pressure [J]. Xinjiang Petroleum Geology, 2022, 43(5): 624-629. |
[5] | GUO Xiaozhe, ZHAO Jian, GAO Wanglai, PU Yanan, LI Chenggeer, GAO Neng. EOR Mechanism of Compound Gas Injection After Multiple Cycles of Oxygen-Reduced Air Huff and Puff in Heavy Oil Reservoirs [J]. Xinjiang Petroleum Geology, 2022, 43(4): 450-455. |
[6] | ZHOU Jinchong, ZHANG Bin, LEI Zhengdong, SHAO Xiaoyan, GUAN Yun, CAO Renyi. Core Experiment and Stimulation Mechanism of Unstable Waterflooding in Low Permeability Reservoirs [J]. Xinjiang Petroleum Geology, 2022, 43(4): 491-495. |
[7] | CHI Yungang, TANG Zhixia, WEI Jing, ZHOU Huize, ZHANG Wenhui. Dominant Water Flow Channels in Block VI of North Buzachi Oilfield [J]. Xinjiang Petroleum Geology, 2022, 43(4): 496-504. |
[8] | LIAN Zhanggui, BIAN Wanjiang, HAN Tao, LAO Binbin, WANG Kaiyu, ZENG Jiangtao. Numerical Simulation on Tilted OWC Controlled by Interlayers in Hade 4CⅢ Reservoir [J]. Xinjiang Petroleum Geology, 2022, 43(2): 177-182. |
[9] | HUANG Weiqiang. Development of Low-Permeability Heavy Oil Reservoirs by CO2 + Surfactant Combination Huff and Puff : A Case Study of Upper Wuerhe Formation Reservoir in Southern Block 5, Karamay Oilfield [J]. Xinjiang Petroleum Geology, 2022, 43(2): 183-187. |
[10] | LIU Pengyu, JIANG Qingping, SHEN Yinghao, ZHAO Tingfeng, GE Hongkui, ZHOU Dong. Numerical Simulation on Fracture Propagation in Conglomerate in Mahu Sag [J]. Xinjiang Petroleum Geology, 2022, 43(2): 227-234. |
[11] | WU Haoqiang, PENG Xiaolong, ZHU Suyang, FENG Ning, ZHANG Si, YE Zeyu. Numerical Simulation on Polymer Flooding Recovery of Conglomerate Reservoirs: Horizontal Fractures in Arched Wells After Multi-Stage Fraturing [J]. Xinjiang Petroleum Geology, 2022, 43(1): 85-91. |
[12] | LI Ning, YANG Lin, ZHENG Xiaomin, ZHANG Jinhai, LIU Yichen, MA Jiong. Evaluation on Injection-Production Connectivity of Low-Permeability Reservoirs Based on Tracer Monitoring and Numerical Simulation [J]. Xinjiang Petroleum Geology, 2021, 42(6): 735-740. |
[13] | XIE Mingying, YAN Zhenghe, WEI Xihui, WU Liulei, ZHANG Yu. Natural Energy Partition in Offshore Thin Heavy Oil Reservoirs With Edge Water [J]. Xinjiang Petroleum Geology, 2021, 42(5): 579-583. |
[14] | CHENG Ning, GUO Xuyang, WEI Pu, HUANG Lei, WANG Liang. Inter-Fracture and Inter-Section Interference Modeling for Staged and Clustered Fracturing Stimulation in Horizontal Wells: A Case Study on Reservoirs of Badaowan Formation in Wellblock Ji 7 in Changji Oilfield [J]. Xinjiang Petroleum Geology, 2021, 42(4): 437-443. |
[15] | CAO Lin, XIU Jianlong, HUANG Lixin, HUANG Feng, XU Yunfeng, ZHAO Hui, SHENG Guanglong. Meshless Method-Based Numerical Simulation of Microbial Flooding [J]. Xinjiang Petroleum Geology, 2021, 42(2): 206-212. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||