新疆石油地质 ›› 2024, Vol. 45 ›› Issue (6): 742-752.doi: 10.7657/XJPG20240614
• 综述 • 上一篇
收稿日期:
2024-05-23
修回日期:
2024-06-05
出版日期:
2024-12-01
发布日期:
2024-11-26
作者简介:
陈秀娟(1995-),女,四川简阳人,助理工程师,硕士,测井地质学,(Tel)0728-59996086(Email)基金资助:
CHEN Xiujuan1(), FENG Zhentao1, ZENG Furong1, HU Jianbo2, XU Song1
Received:
2024-05-23
Revised:
2024-06-05
Online:
2024-12-01
Published:
2024-11-26
摘要:
页岩油气是中国最具发展潜力的非常规油气资源,已成为非常规油气勘探开发的热点。中国页岩多为陆相沉积,岩性变化快,矿物种类多,物性条件差,非均质性强,连续性差,仅利用常规测井资料解释方法无法精细识别岩性,致使页岩储集层特征难以有效表征,制约了油气储量评估与油气开发。为有效识别页岩岩性,系统调研了国内外测井岩性识别技术,梳理了基于测井解释及不同测井手段的岩性识别技术,重点剖析了基于机器学习的测井岩性识别技术,阐述了各技术的方法原理,归纳总结了各技术的优缺点及适用性,对该领域发展趋势进行了展望。
中图分类号:
陈秀娟, 冯镇涛, 曾芙蓉, 胡建波, 徐松. 页岩地层测井岩性识别技术发展现状[J]. 新疆石油地质, 2024, 45(6): 742-752.
CHEN Xiujuan, FENG Zhentao, ZENG Furong, HU Jianbo, XU Song. Development Status of Logging-Based Lithology Identification Technology for Shale Formations[J]. Xinjiang Petroleum Geology, 2024, 45(6): 742-752.
[1] | 梁久红, 张丽艳, 韩冰冰, 等. 松辽盆地古龙页岩油储层岩性识别与流体评价技术[J]. 大庆石油地质与开发, 2020, 39(3):163-169. |
LIANG Jiuhong, ZHANG Liyan, HAN Bingbing, et al. Lithology identification and fluid evaluation techniques for the Gulong shale oil reservoirs in Songliao basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2020, 39(3):163-169. | |
[2] | 刘双莲. 页岩气“双甜点”参数测井评价方法[J]. 石油与天然气地质, 2022, 43(4):1005-1012. |
LIU Shuanglian. Logging evaluation of “double sweet spot” in shale gas reservoirs[J]. Oil & Gas Geology, 2022, 43(4):1005-1012. | |
[3] | 史彪, 吴丰, 李树新, 等. 海陆过渡相优质页岩测井识别:以鄂尔多斯盆地大宁—吉县地区山2段为例[J]. 地质科技通报, 2023, 42(2):115-126. |
SHI Biao, WU Feng, LI Shuxin, et al. Logging identification of high-quality shale of the marine-continent transitional facies:An example of the Shan 2 member of the Daning-Jixian area in the Ordos basin[J]. Bulletin of Geological Science and Technology, 2023, 42(2):115-126. | |
[4] | 付光明, 严加永, 张昆, 等. 岩性识别技术现状与进展[J]. 地球物理学进展, 2017, 32(1):26-40. |
FU Guangming, YAN Jiayong, ZHANG Kun, et al. Current status and progress of lithology identification technology[J]. Progress in Geophysics, 2017, 32(1):26-40. | |
[5] | LAI Fuqiang, LIU Yuejiao, TAN Xianfeng, et al. A composite water saturation model of continental mixed shale oil reservoirs based on complex lithology identification[J]. Geological Journal, 2024, 59(4):1-15. |
[6] | 薛桂玉, 菅红军, 赵永忠, 等. 吉木萨尔凹陷芦草沟组页岩油储层岩性识别方法[J]. 测井技术, 2021, 45(6):636-641. |
XUE Guiyu, JIAN Hongjun, ZHAO Yongzhong, et al. Lithology identification method for the shale oil reservoir of Lucaogou formation in Jimusar depression[J]. Well Logging Technology, 2021, 45(6):636-641. | |
[7] | 陈雨茂, 赵虎, 杨宏伟, 等. 基于小样本数据深度学习的砂体厚度预测方法及应用[J]. 新疆石油地质, 2023, 44(2):231-237. |
CHEN Yumao, ZHAO Hu, YANG Hongwei, et al. A sand body thickness prediction method based on deep learning from small sample data and its application[J]. Xinjiang Petroleum Geology, 2023, 44(2):231-237. | |
[8] | 郑建东, 王春燕, 章华兵, 等. 松辽盆地古龙页岩油储层七性参数和富集层测井评价方法[J]. 大庆石油地质与开发, 2021, 40(5):87-97. |
ZHENG Jiandong, WANG Chunyan, ZHANG Huabing, et al. Logging evaluating methods of seven property parameters and enriched layers for Gulong shale oil reservoir in Songliao basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2021, 40(5):87-97. | |
[9] | 游富粮, 柳广弟, 孙明亮, 等. 鄂尔多斯盆地三叠系延长组7段高伽马砂岩测井识别及其展布特征[J]. 石油实验地质, 2023, 45(1):99-108. |
YOU Fuliang, LIU Guangdi, SUN Mingliang, et al. Logging identification and distribution characteristics of high-gamma sandstones in the 7th member of Triassic Yanchang formation,Ordos basin[J]. Petroleum Geology & Experiment, 2023, 45(1):99-108. | |
[10] | 郭小波, 黄志龙, 涂小仙, 等. 马朗凹陷芦草沟组致密储集层复杂岩性识别[J]. 新疆石油地质, 2013, 34(6):649-652. |
GUO Xiaobo, HUANG Zhilong, TU Xiaoxian, et al. Identification and application of complex lithology of Lucaogou tight reservoir in Malang sag,Santanghu basin[J]. Xinjiang Petroleum Geology, 2013, 34(6):649-652. | |
[11] | 赵显令, 王贵文, 周正龙, 等. 地球物理测井岩性解释方法综述[J]. 地球物理学进展, 2015, 30(3):1278-1287. |
ZHAO Xianling, WANG Guiwen, ZHOU Zhenglong, et al. A review of lithology interpretation methods using geophysical well logs[J]. Progress in Geophysics, 2015, 30(3):1278-1287. | |
[12] | 雍世和, 张超谟. 测井数据处理与综合解释[M]. 山东东营: 中国石油大学出版社, 2007:80-82. |
YONG Shihe, ZHANG Chaomo. Logging data processing and comprehensive interpretation[M]. Dongying,Shandong: China University of Petroleum Press, 2007:80-82. | |
[13] | 冉冶, 王贵文, 周正龙, 等. 鄂尔多斯盆地合水地区长7致密油岩性岩相类型识别及其应用[J]. 中国地质, 2016, 43(4):1331-1340. |
RAN Ye, WANG Guiwen, ZHOU Zhenglong, et al. Identification of lithology and lithofacies type and its application to Chang 7 tight oil in Heshui area,Ordos basin[J]. Geology in China, 2016, 43(4):1331-1340. | |
[14] | 车世琦. 测井资料用于页岩岩相划分及识别:以涪陵气田五峰组—龙马溪组为例[J]. 岩性油气藏, 2018, 30(1):121-132. |
CHE Shiqi. Shale lithofacies identification and classification by using logging data:A case of Wufeng-Longmaxi formation in Fuling gas field,Sichuan basin[J]. Lithologic Reservoirs, 2018, 30(1):121-132. | |
[15] | 朱伟峰, 李俊国, 丁娱娇, 等. 沧东凹陷孔二段细粒沉积相区测井岩性识别方法[J]. 测井技术, 2019, 43(6):626-630. |
ZHU Weifeng, LI Junguo, DING Yujiao, et al. Logging lithology identification method for fine sedimentary facies in Kong 2 formation in Cangdong sag[J]. Well Logging Technology, 2019, 43(6):626-630. | |
[16] | 李斌, 董振国, 罗群. 自然伽马能谱测井在海相页岩储层评价中的应用研究[J]. 核电子学与探测技术, 2023, 43(3):604-614. |
LI Bin, DONG Zhenguo, LUO Qun. Application of natural Gamma spectroscopy element logging in evaluation of marine shale reservoir[J]. Nuclear Electronics & Detection Technology, 2023, 43(3):604-614. | |
[17] | 赵军, 杨阳, 陈伟中, 等. 基于ECS测井的岩性识别方法[J]. 地球物理学进展, 2015, 30(5):2342-2348. |
ZHAO Jun, YANG Yang, CHEN Weizhong, et al. New method for well logging lithologic identification based on elemental capture spectroscopy[J]. Progress in Geophysics, 2015, 30(5):2342-2348. | |
[18] | 韩成, 陈旋, 陈杰, 等. 三塘湖盆地芦草沟组页岩油测井评价技术进展[J]. 新疆石油地质, 2020, 41(6):740-747. |
HAN Cheng, CHEN Xuan, CHEN Jie, et al. Progress of well logging evaluation techniques for shale oil of Lucaogou formation in Santanghu basin[J]. Xinjiang Petroleum Geology, 2020, 41(6):740-747. | |
[19] | 闫学洪, 曹春锋, 王慧. 岩性扫描测井资料处理解释方法研究与应用[J]. 测井技术, 2018, 42(5):503-508. |
YAN Xuehong, CAO Chunfeng, WANG Hui. Research and application on processing and interpretation of litho scanner logging data[J]. Well Logging Technology, 2018, 42(5):503-508. | |
[20] | 毛锐, 申子明, 张浩, 等. 基于岩性扫描测井的混积岩岩性识别:以玛湖凹陷风城组为例[J]. 新疆石油地质, 2022, 43(6):743-749. |
MAO Rui, SHEN Ziming, ZHANG Hao, et al. Lithology identification for diamictite based on lithology scan logging:A case study on Fengcheng formation,Mahu sag[J]. Xinjiang Petroleum Geology, 2022, 43(6):743-749. | |
[21] | ASANTE-OKYERE S, SHEN Chuanbo, OSEI H. Enhanced machine learning tree classifiers for lithology identification using Bayesian optimization[J]. Applied Computing and Geosciences, 2022, 16:100100. |
[22] | 姚军, 刘磊, 杨永飞, 等. 基于多实验成像和机器学习的页岩多尺度孔隙结构表征新方法[J]. 天然气工业, 2023, 43(1):36-46. |
YAO Jun, LIU Lei, YANG Yongfei, et al. A new method for characterizing multi-scale shale pore structure based on multi-experimental imaging and machine learning[J]. Natural Gas Industry, 2023, 43(1):36-46. | |
[23] | 程希, 周军, 傅海成, 等. 机器学习算法在地球物理测井中的适用性及应用[J]. 西北地质, 2023, 56(4):336-348. |
CHENG Xi, ZHOU Jun, FU Haicheng, et al. Applicability and application of machine learning algorithm in logging interpretation[J]. Northwestern Geology, 2023, 56(4):336-348. | |
[24] | REN Quan, ZHANG Hongbing, ZHANG Dailu, et al. Lithology identification using principal component analysis and particle swarm optimization fuzzy decision tree[J]. Journal of Petroleum Science & Engineering, 2023, 220:2-17. |
[25] | 刘毅, 陆正元, 吕晶, 等. 主成分分析法在泥页岩地层岩性识别中的应用[J]. 断块油气田, 2017, 24(3):360-363. |
LIU Yi, LU Zhengyuan, LYU Jing, et al. Application of principal component analysis method in lithology identification for shale formation[J]. Fault-Block Oil & Gas Field, 2017, 24(3):360-363. | |
[26] | 马峥, 张春雷, 高世臣. 主成分分析与模糊识别在岩性识别中的应用[J]. 岩性油气藏, 2017, 29(5):127-133. |
MA Zheng, ZHANG Chunlei, GAO Shichen. Lithology identification based on principal component analysis and fuzzy recognition[J]. Lithologic Reservoirs, 2017, 29(5):127-133. | |
[27] | 孔强夫, 杨才, 李浩, 等. 基于图论聚类和最小临近算法的岩性识别方法:以四川盆地西部雷口坡组碳酸盐岩储层为例[J]. 石油与天然气地质, 2020, 41(4):884-890. |
KONG Qiangfu, YANG Cai, LI Hao, et al. A lithology recognition method based on multi-resolution graph-based clustering and K-Nearest Neighbor:A case study from the Leikoupo formation carbonate reservoirs in western Sichuan basin[J]. Oil & Gas Geology, 2020, 41(4):884-890. | |
[28] | 张冲, 张占松, 张超谟, 等. 基于测井相分析技术的复杂岩性识别方法研究[J]. 科学技术与工程, 2014, 14(29):157-161. |
ZHANG Chong, ZHANG Zhansong, ZHANG Chaomo, et al. Study on the lithology identification method of complex reservoir based on logging fancies analysis technology[J]. Science Technology and Engineering, 2014, 14(29):157-161. | |
[29] | 刘娟, 闵宣霖, 漆仲黎, 等. 基于电成像测井的多维度岩性识别方法[J]. 测井技术, 2023, 47(6):726-735. |
LIU Juan, MIN Xuanlin, QI Zhongli, et al. Multi-dimensional lithology identification method based on microresistivity image logging[J]. Well Logging Technology, 2023, 47(6):726-735. | |
[30] | 赵军龙, 李纲, 麻平社, 等. 神经网络在石油测井解释中的应用综述[J]. 地球物理学进展, 2010, 25(5):1744-1751. |
ZHAO Junlong, LI Gang, MA Pingshe, et al. The application of network techonology to petroleum logging interpretation[J]. Progress in Geophysics, 2010, 25(5):1744-1751. | |
[31] | DEV V A, EDEN M R. Formation lithology classification using scalable gradient boosted decision trees[J]. Computers and Chemical Engineering, 2019, 128:392-404. |
[32] | 潘拓, 马鑫, 谢安, 等. 利用主成分分析法优化BP神经网络模型在砂砾岩岩性识别中的应用[J]. 新疆地质, 2020, 38(3):417-420. |
PAN Tuo, MA Xin, XIE An, et al. Application of the optimized BP neural network model based on principal component analysis in lithology identification of glutenite reservoirs[J]. Xinjiang Geology, 2020, 38(3):417-420. | |
[33] | 刘志刚. 面向页岩油测井评价的极限过程神经网络模型和算法研究[D]. 黑龙江大庆: 东北石油大学, 2019. |
LIU Zhigang. Research on extreme process neural network models and algorithms for shale oil logging evaluation[D]. Daqing,Heilongjiang: Northeast Petroleum University, 2019. | |
[34] | 任一菱. 大民屯凹陷沙四段致密油测井评价方法[D]. 黑龙江大庆: 东北石油大学, 2016. |
REN Yiling. Log evaluation method of tight oil reservoir in S4 formation of Damintun sag[D]. Daqing,Heilongjiang: Northeast Petroleum University, 2016. | |
[35] | 魏旸, 张占松, 黄雨阳, 等. 基于归一化核极限学习机的复杂岩性储层的岩性识别方法[J]. 贵州师范大学学报(自然科学版), 2017, 35(2):79-83. |
WEI Yang, ZHANG Zhansong, HUANG Yuyang, et al. Study on lithology identification method for complex lithology reservoir based on normalized kernel extreme learning machine[J]. Journal of Guizhou Normal University(Natural Sciences), 2017, 35(2):79-83. | |
[36] | 徐鹏宇, 周怀来, 赵霞, 等. 基于极限学习机的碳酸盐岩储层测井评价方法:以川中北部GM区块灯二段为例[J]. 大庆石油地质与开发, 2022, 41(6):133-142. |
XU Pengyu, ZHOU Huailai, ZHAO Xia, et al. Logging evaluation method for carbonate reservoir based on extreme learning machine:A case study of Member 2 of Dengying formation in GM block in north central Sichuan basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2022, 41(6):133-142. | |
[37] | 刘志刚, 许少华, 肖佃师, 等. 极限学习脊波过程神经网络及应用[J]. 电子科技大学学报, 2019, 48(1):110-116. |
LIU Zhigang, XU Shaohua, XIAO Dianshi, et al. Extreme learning ridgelet process neural network and application[J]. Journal of University of Electronic Science and Technology of China, 2019, 48(1):110-116. | |
[38] | 熊峰, 廖一凡, 曹伟腾, 等. 基于卷积神经网络-深度迁移学习的岩性自动识别研究[J]. 安全与环境工程, 2023, 30(4):26-34. |
XIONG Feng, LIAO Yifan, CAO Weiteng, et al. Study on automatic recognition of rock lithology based on convolutional neural network and deep transfer learning[J]. Safety and Environmental Engineering, 2023, 30(4):26-34. | |
[39] | 钟路路. 济阳坳陷陆相页岩油储层岩性测井智能识别方法[D]. 重庆: 重庆科技学院, 2022. |
ZHONG Lulu. Methods on intelligent logging identification for lithology of terrestrial shale oil reservoir in Jiyang depression[D]. Chongqing: Chongqing University of Science and Technology, 2022. | |
[40] | 崔俊峰, 杨金路, 王民, 等. 基于随机森林算法的泥页岩孔隙度预测[J]. 油气地质与采收率, 2023, 30(6):13-21. |
CUI Junfeng, YANG Jinlu, WANG Min, et al. Shale porosity prediction based on random forest algorithm[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(6):13-21. | |
[41] | 周雪晴, 张占松, 张超谟, 等. 基于粗糙集—随机森林算法的复杂岩性识别[J]. 大庆石油地质与开发, 2017, 36(6):127-133. |
ZHOU Xueqing, ZHANG Zhansong, ZHANG Chaomo, et al. Complex lithologic identification based on rough set-random forest algorism[J]. Petroleum Geology & Oilfield Development in Daqing, 2017, 36(6):127-133. | |
[42] | 初勇志, 刘成林, 太万雪, 等. 基于支持向量机(SVM)的不同咸化程度烃源岩总有机碳含量预测模型[J]. 石油实验地质, 2022, 44(4):739-746. |
CHU Yongzhi, LIU Chenglin, TAI Wanxue, et al. Prediction model of TOC contents in source rocks with different salinity degrees based on Support Vector Machine (SVM)[J]. Petroleum Geology & Experiment, 2022, 44(4):739-746. | |
[43] | 郭彦省. 基于非线性学习理论的非常规储层基本参数测井评价[D]. 北京: 中国矿业大学(北京), 2015. |
GUO Yansheng. Logging evaluation of basic parameters for unconventional reservoir based on the nonlinear learning theory[D]. Beijing: China University of Mining & Technology(Beijing), 2015. | |
[44] | ADEOTI L, IKORO C, ADESANYA O, et al. On the effectiveness of using quantitative AVO analysis in fluid and lithology discrimination in an offshore Niger Delta field,Nigeria[J]. Ife Journal of Science, 2019, 21(1):1-12. |
[45] | WATERS C N, VANE C H, KEMP S J, et al. Lithological and chemostratigraphic discrimination of facies within the Bowland shale formation within the Craven and Edale basins,UK[J]. Petroleum Geoscience, 2020, 26(2):325-345. |
[46] | 杨振. 青西致密油储层测井评价研究[D]. 山东青岛: 中国石油大学(华东), 2015. |
YANG Zhen. Qingxi depression tight oil reservoir logging evaluation research[D]. Qingdao,Shandong: China University of Petroleum(East China), 2015. | |
[47] | 翟艇. 松辽盆地南部油页岩地层的测井评价方法研究[D]. 长春: 吉林大学, 2015. |
ZHAI Ting. Research of log evaluation for oil shale formations in southern Songliao basin[D]. Changchun: Jilin University, 2015. | |
[48] | 韩宏伟, 王继晨, 康宇, 等. 测井智能处理与解释方法现状与展望[J]. 三峡大学学报(自然科学版), 2022, 44(6):1-14. |
HAN Hongwei, WANG Jichen, KANG Yu, et al. Research status and prospect of intelligent logging processing and interpretation method[J]. Journal of China Three Gorges University(Natural Sciences), 2022, 44(6):1-14. | |
[49] | 许振浩, 马文, 李术才, 等. 岩性识别:方法、现状及智能化发展趋势[J]. 地质论评, 2022, 68(6):2290-2304. |
XU Zhenhao, MA Wen, LI Shucai, et al. Lithology identification:Method,research status and intelligent development trend[J]. Geological Review, 2022, 68(6):2290-2304. |
[1] | 李云鹏, 林学春, 余星辰, 康志宏, 李佩敬, 王亚静, 祁爱平. 王徐庄油田薄层生物石灰岩小—微裂缝识别及建模[J]. 新疆石油地质, 2024, 45(6): 671-679. |
[2] | 秦志军, 操应长, 冯程. 基于改进型随机森林算法的页岩岩性识别——以准噶尔盆地芦草沟组为例[J]. 新疆石油地质, 2024, 45(5): 595-603. |
[3] | 王剑, 刘金, 潘晓慧, 张宝真, 李二庭, 周新艳. 吉木萨尔凹陷芦草沟组页岩油生烃母质及其生烃机理[J]. 新疆石油地质, 2024, 45(3): 253-261. |
[4] | 蒋奇君, 李勇, 肖正录, 路俊刚, 秦春雨, 张少敏. 川中地区大安寨段页岩热演化史及油气地质意义[J]. 新疆石油地质, 2024, 45(3): 262-270. |
[5] | 李娜, 李卉, 刘鸿, 陈方文, 杨森, 邹阳. 玛湖凹陷玛页1井风城组页岩油地质甜点优选[J]. 新疆石油地质, 2024, 45(3): 271-278. |
[6] | 朱越, 伍顺伟, 邓玉森, 刘林, 雷祥辉, 牛有牧. 玛湖凹陷风城组储集层孔喉结构及流体赋存特征[J]. 新疆石油地质, 2024, 45(3): 286-295. |
[7] | 覃建华, 李映艳, 杜戈峰, 周阳, 邓远, 彭寿昌, 肖佃师. 基于核磁共振测井的页岩油产能分析及甜点评价[J]. 新疆石油地质, 2024, 45(3): 317-326. |
[8] | 田刚, 祝健, 蒲平凡, 夏安, 董卓, 吴嘉仪, 王飞. 吉木萨尔凹陷芦草沟组层理页岩渗吸置换规律[J]. 新疆石油地质, 2024, 45(3): 346-354. |
[9] | 程丽, 严伟, 李娜. 陆相页岩储集层含水饱和度测井计算方法——以川东南复兴区块凉高山组为例[J]. 新疆石油地质, 2024, 45(3): 371-377. |
[10] | 刘洪林, 王怀厂, 李晓波. 泸州地区五峰组—龙马溪组页岩气成藏特征[J]. 新疆石油地质, 2024, 45(1): 19-26. |
[11] | 宋海强, 刘慧卿, 王敬, 斯尚华, 杨潇. 鄂尔多斯盆地东南部长7段页岩油气富集主控因素[J]. 新疆石油地质, 2024, 45(1): 27-34. |
[12] | 方正, 陈勉, 王溯, 李嘉成, 吕嘉昕, 余延波, 焦冀博. 准噶尔盆地吉木萨尔凹陷页岩水平井水力压裂裂缝形态[J]. 新疆石油地质, 2024, 45(1): 72-80. |
[13] | 毛锐, 赵磊, 申子明, 罗兴平, 陈山河, 冯程. 玛湖凹陷风城组碱性矿物特征及天然碱测井评价[J]. 新疆石油地质, 2023, 44(6): 667-673. |
[14] | 王挺, 汪杰, 江厚顺, 续化蕾, 姚自义, 南冲. 页岩水平井水力压裂裂缝扩展及防窜三维地质模拟[J]. 新疆石油地质, 2023, 44(6): 720-728. |
[15] | 孔祥晔, 曾溅辉, 罗群, 谭杰, 张芮, 王鑫, 王乾右. 川中地区大安寨段陆相页岩岩相对孔隙结构的控制作用[J]. 新疆石油地质, 2023, 44(4): 392-403. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||