Xinjiang Petroleum Geology ›› 2024, Vol. 45 ›› Issue (3): 362-370.doi: 10.7657/XJPG20240314
• APPLICATION OF TECHNOLOGY • Previous Articles Next Articles
GAI Shanshan1(), WANG Zizhen2(
), LIU Haojie1, ZHANG Wensheng2, YU Wenzheng1, YANG Chongxiang2, WANG Yuping1
Received:
2023-08-18
Revised:
2023-10-10
Online:
2024-06-01
Published:
2024-05-23
CLC Number:
GAI Shanshan, WANG Zizhen, LIU Haojie, ZHANG Wensheng, YU Wenzheng, YANG Chongxiang, WANG Yuping. Establishment and Application of Rock Mechanical Parameter Profile to Tight Reservoirs in Yongjin Oilfield[J]. Xinjiang Petroleum Geology, 2024, 45(3): 362-370.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1.
Mineral composition and porosity of core samples from the Yongjin oilfield"
井名 | 岩心编号 | 深度/m | 矿物含量/% | 孔隙度/% | ||||
---|---|---|---|---|---|---|---|---|
石英 | 斜长石 | 钾长石 | 白云石 | 黏土矿物 | ||||
Y301井 | 1号 | 5 543.11 | 41.7 | 54.2 | 0 | 0 | 4.1 | 7.25 |
Y301井 | 2号 | 5 543.86 | 44.7 | 28.6 | 11.6 | 0 | 15.1 | 5.36 |
Y3井 | 3号 | 984.64 | 46.6 | 24.1 | 0 | 0 | 29.3 | 1.81 |
Y301井 | 4号 | 5 545.91 | 51.3 | 35.5 | 0 | 7.5 | 5.7 | 10.85 |
Y3井 | 5号 | 985.11 | 39.5 | 22.3 | 0 | 0 | 38.2 | 1.54 |
Y3井 | 6号 | 985.54 | 36.1 | 36.7 | 0 | 0 | 27.2 | 2.84 |
Table 3.
Microscopic elastic modulus, hardness, and fracture toughness calculated from nano-indentation tests on core samples from the Yongjin oilfield"
岩心 编号 | 微观弹性模量/ GPa | 硬度/ GPa | 断裂韧性/ (Pa·m1/2) |
---|---|---|---|
1号 | 32.84 | 3.24 | 60 553.4 |
2号 | 50.09 | 4.41 | 89 972.2 |
3号 | 29.29 | 1.47 | 45 215.9 |
4号 | 53.38 | 5.22 | 98 713.8 |
5号 | 45.48 | 3.50 | 72 886.4 |
6号 | 43.92 | 3.46 | 73 076.0 |
[1] | 任新成. 准噶尔盆地永进油田西山窑组油藏成岩演化及成藏史[J]. 新疆石油地质, 2021, 42(1):21-28. |
REN Xincheng. Diagenetic evolution and hydrocarbon accumulation history in reservoirs of Xishanyao formation in Yongjin oilfield,Junggar basin[J]. Xinjiang Petroleum Geology, 2021, 42(1):21-28. | |
[2] | 赖锦, 王贵文, 范卓颖, 等. 非常规油气储层脆性指数测井评价方法研究进展[J]. 石油科学通报, 2016, 1(3):330-341. |
LAI Jin, WANG Guiwen, FAN Zhuoying, et al. Research progress in brittleness index evaluation methods with logging data in unconventional oil and gas reservoirs[J]. Petroleum Science Bulletin, 2016, 1(3):330-341. | |
[3] | 徐君, 杨春, 孟朋飞. 吐哈探区非常规油气资源开发策略[J]. 新疆石油地质, 2023, 44(3):314-320. |
XU Jun, YANG Chun, MENG Pengfei. Development strategies for unconventional oil and gas resources in Turpan-Hami exploration area[J]. Xinjiang Petroleum Geology, 2023, 44(3):314-320. | |
[4] | 郭旭升, 周德华, 赵培荣, 等. 鄂尔多斯盆地石炭系-二叠系煤系非常规天然气勘探开发进展与攻关方向[J]. 石油与天然气地质, 2022, 43(5):1013-1023. |
GUO Xusheng, ZHOU Dehua, ZHAO Peirong, et al. Progresses and directions of unconventional natural gas exploration and development in the Carboniferous-Permian coal measure strata,Ordos basin[J]. Oil & Gas Geology, 2022, 43(5):1013-1023. | |
[5] | 刘红英, 李冀秋. 低渗致密储层微纳米孔喉分布及其对渗流的影响[J]. 非常规油气, 2023, 10(3):98-102. |
LIU Hongying, LI Jiqiu. Distribution of micro-nano pore throat and its influence on seepage in low permeability and tight oil reservoir[J]. Unconventional Oil & Gas, 2023, 10(3):98-102. | |
[6] | 郝牧歌, 张金功, 马士磊. 从常规与非常规油气成藏的正相关性角度预测有利区:以孤岛1号凹隆域低部位为例[J]. 油气地质与采收率, 2022, 29(4):46-56. |
HAO Muge, ZHANG Jingong, MA Shilei. Favorable area prediction from perspective of positive accumulation correlation between conventional and unconventional oil and gas reservoirs:A case of low part in Gudao No.1 sag-uplift band[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(4):46-56. | |
[7] | 王小兵, 胡炎射, 李森, 等. 沉积岩致密油藏压裂裂缝导流能力及产能模型[J]. 新疆石油地质, 2023, 44(4):442-449. |
WANG Xiaobing, HU Yanshe, LI Sen, et al. Models for conductivity and productivity of hydraulic fractures in tight oil reservoirs in sedimentary rocks[J]. Xinjiang Petroleum Geology, 2023, 44(4):442-449. | |
[8] | 李雪晨, 马新仿, 肖凤朝, 等. 基于模糊综合评判的致密油储层压裂选井组合方法[J]. 大庆石油地质与开发, 2022, 41(2):147-156. |
LI Xuechen, MA Xinfang, XIAO Fengchao, et al. Combined method of candidate fracturing well in tight oil reservoirs based on fuzzy comprehensive evaluation[J]. Petroleum Geology & Oilfield Development in Daqing, 2022, 41(2):147-156. | |
[9] |
肖阳, 刘守昱, 何永志, 等. 致密砂岩裂缝性气藏缝网压裂裂缝复杂程度评价方法[J]. 特种油气藏, 2022, 29(2):157-163.
doi: 10.3969/j.issn.1006-6535.2022.02.023 |
XIAO Yang, LIU Shouyu, HE Yongzhi, et al. Evaluation method of fracture complexity of fracture network fracturing for tight sandstone fractured gas reservoir[J]. Special Oil & Gas Reservoirs, 2022, 29(2):157-163. | |
[10] | RICKMAN R, MULLEN M, PETRE E, et al. A practical use of shale petrophysics for stimulation design optimization:All shale plays are not clones of the Barnett shale[R]. SPE 115258, 2008. |
[11] | 唐颖, 邢云, 李乐忠, 等. 页岩储层可压裂性影响因素及评价方法[J]. 地学前缘(中国地质大学(北京);北京大学), 2012, 19(5):356-363. |
TANG Ying, XING Yun, LI Lezhong, et al. Influence factors and evaluation methods of the gas shale fracability[J]. Earth Science Frontiers(China University of Geosciences(Beijing);Peking University), 2012, 19(5):356-363. | |
[12] |
袁俊亮, 邓金根, 张定宇, 等. 页岩气储层可压裂性评价技术[J]. 石油学报, 2013, 34(3):523-527.
doi: 10.7623/syxb201303015 |
YUAN Junliang, DENG Jin’gen, ZHANG Dingyu, et al. Fracability evaluation of shale-gas reservoirs[J]. Acta Petrolei Sinica, 2013, 34(3):523-527.
doi: 10.7623/syxb201303015 |
|
[13] | 夏宏泉, 杨双定, 弓浩浩, 等. 岩石脆性实验及压裂缝高度与宽度测井预测[J]. 西南石油大学学报(自然科学), 2013, 35(4):81-89. |
XIA Hongquan, YANG Shuangding, GONG Haohao, et al. Research on rock brittleness experiment and logging prediction of hydraulic fracture height & width[J]. Journal of Southwest Petroleum University (Science and Technology Edition), 2013, 35(4):81-89. | |
[14] | 曾治平, 刘震, 马骥, 等. 深层致密砂岩储层可压裂性评价新方法[J]. 地质力学学报, 2019, 25(2):223-232. |
ZENG Zhiping, LIU Zhen, MA Ji, et al. A new method for fracability evaluation in deep and tight sandstone reservoirs[J]. Journal of Geomechanics, 2019, 25(2):223-232. | |
[15] | JARVIE D M, HILL R J, RUBLE T E, et al. Unconventional shale-gas systems:The Mississippian Barnett shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin, 2007, 91(4):475-499. |
[16] | 赵金洲, 许文俊, 李勇明, 等. 页岩气储层可压性评价新方法[J]. 天然气地球科学, 2015, 26(6):1165-1172. |
ZHAO Jinzhou, XU Wenjun, LI Yongming, et al. A new method for fracability evaluation of shale-gas reservoirs[J]. Natural Gas Geoscience, 2015, 26(6):1165-1172. | |
[17] | HUCKA V, DAS B. Brittleness determination of rocks by different methods[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1974, 11(10):389-392. |
[18] |
时贤, 蒋恕, 卢双舫, 等. 利用纳米压痕实验研究层理性页岩岩石力学性质:以渝东南酉阳地区下志留统龙马溪组为例[J]. 石油勘探与开发, 2019, 46(1):155-164.
doi: 10.11698/PED.2019.01.16 |
SHI Xian, JIANG Shu, LU Shuangfang, et al. Investigation of mechanical properties of bedded shale by nanoindentation tests:A case study on Lower Silurian Longmaxi formation of Youyang area in southeast Chongqing,China[J]. Petroleum Exploration and Development, 2019, 46(1):155-164. | |
[19] | OLIVER W C, PHARR G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J]. Journal of Materials Research, 1992, 7(6):1564-1583. |
[20] | 张广清, 陈勉, 金衍, 等. 围压下泥岩断裂韧性测试与解释方法[J]. 工程地质学报, 2004, 12(4):431-435. |
ZHANG Guangqing, CHEN Mian, JIN Yan, et al. Measurement and interpretation of shale toughness under confining pressures[J]. Journal of Engineering Geology, 2004, 12(4):431-435. | |
[21] | CHENG Yangtse, LI Zhiyong, ZHENG Chemin. Scaling relationships for indentation measurements[J]. Philosophical Magazine A, 2002, 82(10):1821-1829. |
[22] |
孙建孟, 韩志磊, 秦瑞宝, 等. 致密气储层可压裂性测井评价方法[J]. 石油学报, 2015, 36(1):74-80.
doi: 10.7623/syxb201501009 |
SUN Jianmeng, HAN Zhilei, QIN Ruibao, et al. Log evaluation method of fracturing performance in tight gas reservoir[J]. Acta Petrolei Sinica, 2015, 36(1):74-80.
doi: 10.7623/syxb201501009 |
|
[23] | 李庆辉, 陈勉, 金衍, 等. 页岩脆性的室内评价方法及改进[J]. 岩石力学与工程学报, 2012, 31(8):1680-1685. |
LI Qinghui, CHEN Mian, JIN Yan, et al. Indoor evaluation method for shale brittleness and improvement[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(8):1680-1685. | |
[24] | MAVKO G, MUKERJI T, DVORKIN J. The rock physics handbook:Tools for seismic analysis of porous media[M]. Cambridge, United Kingdom: Cambridge University Press, 2009. |
[25] | 王璞, 吴国忱. 基于自相容近似的致密储层岩石物理建模[J]. 地球物理学进展, 2015, 30(5):2233-2238. |
WANG Pu, WU Guochen. The rock physics modeling for tight reservoir based on the self-consistent approximation[J]. Progress in Geophysics, 2015, 30(5):2233-2238. | |
[26] |
QIAN Keran, LIU Tao, LIU Junzhou, et al. Construction of a novel brittleness index equation and analysis of anisotropic brittleness characteristics for unconventional shale formations[J]. Petroleum Science, 2020, 17(1):70-85.
doi: 10.1007/s12182-019-00372-6 |
[27] | NORRIS A N. A differential scheme for the effective moduli of composites[J]. Mechanics of Materials, 1985, 4(1):1-16. |
[1] | WANG Jian, LIU Jin, PAN Xiaohui, ZHANG Baozhen, LI Erting, ZHOU Xinyan. Precursor and Mechanism of Hydrocarbon Generation for Shale Oil in Lucaogou Formation, Jimsar Sag [J]. Xinjiang Petroleum Geology, 2024, 45(3): 253-261. |
[2] | LI Na, LI Hui, LIU Hong, CHEN Fangwen, YANG Sen, ZOU Yang. Optimization of Geological Sweet Spots for Shale Oil in Fengcheng Formation in Well Maye-1, Mahu Sag [J]. Xinjiang Petroleum Geology, 2024, 45(3): 271-278. |
[3] | MAO Rui, BAI Yu, WANG Pan, HUANG Zhiqiang. Identification of Fluid in Highly Saline Tight Reservoirs of Fengcheng Formation in Maxi Slope Area [J]. Xinjiang Petroleum Geology, 2024, 45(3): 279-285. |
[4] | BIAN Baoli, SU Dongxu, JIANG Wenlong, WANG Xueyong, PAN Jin, LIU Longsong, JIANG Zhongfa. Exploration Breakthrough and New Insights of Baijiantan Formation in Mahu Sag and Its Periphery [J]. Xinjiang Petroleum Geology, 2024, 45(3): 296-305. |
[5] | ZHI Dongming, CHEN Xuan, YANG Runze, LIU Juntian, YU Haiyue, MA Qiang. Exploration Practice and Total Petroleum System in Residual Marine Sag,Eastern Junggar Basin [J]. Xinjiang Petroleum Geology, 2024, 45(2): 127-138. |
[6] | LIU Chaowei, LI Hui, WANG Zesheng, WANG Qiuyu, XIE Zhiyi, HUANG Zhiqiang, ZHANG Rong. Breakthrough and Implication of Oil and Gas Exploration in Permian Upper Wuerhe Formation in Fukang Sag, Junggar Basin [J]. Xinjiang Petroleum Geology, 2024, 45(2): 139-150. |
[7] | XIONG Ting, LIU Yu, CHEN Wenli, ZHONG Weijun, JIA Chunming, JIANG Tao, SHANG Chun. New Understanding of Hydrocarbon Accumulation Model of Upper Wuerhe Formation on Western Slope of Shawan Sag, Junggar Basin [J]. Xinjiang Petroleum Geology, 2024, 45(2): 151-162. |
[8] | KUANG Hao, ZHOU Yuandong, LIU Hao, PAN Lang, ZHOU Runchi, WANG Junmin, TAN Xianfeng. Genesis of Differential Bonding Between Zeolite Cements and Clastic Particles in Sandy Conglomerates in Shawan Sag,Junggar Basin [J]. Xinjiang Petroleum Geology, 2024, 45(2): 163-171. |
[9] | ZHANG Deyao. Genesis of Tilted Oil-Water Contact of Heavy Oil Reservoir in Shawan Formation, Chunfeng Oilfield, Junggar Basin [J]. Xinjiang Petroleum Geology, 2024, 45(2): 205-212. |
[10] | FANG Zheng, CHEN Mian, WANG Su, LI Jiacheng, LYU Jiaxin, YU Yanbo, JIAO Jibo. Geometry of Hydraulic Fractures in Fractured Horizontal Wells in Shale Reservoirs of Jimsar Sag,Junggar Basin [J]. Xinjiang Petroleum Geology, 2024, 45(1): 72-80. |
[11] | ZUO Rusi, ZENG Xiang, CAO Zhongxiang, CAI Jingong, ZHANG Kuihua, ZHANG Guanlong. Diagenetic Evolution and Its Significance of Zeolites in Sedimentary Rocks [J]. Xinjiang Petroleum Geology, 2023, 44(5): 543-553. |
[12] | LI Shirui, ZHAO Kai, XU Jiangwei, Murzhaty ASKUR, XU Jinlu, ZHANG Xing. Enhanced Oil Recovery by CO2 Huff-n-Puff in Tight Oil Reservoirs in Mazhong Block,Santanghu Basin [J]. Xinjiang Petroleum Geology, 2023, 44(5): 572-576. |
[13] | GAN Renzhong, XIONG Jian, PENG Miao, LIU Xiangjun, LIANG Lixi, DING Yi. Rock Mechanical Properties and Energy Evolution of Continental Shale Reservoirs [J]. Xinjiang Petroleum Geology, 2023, 44(4): 472-478. |
[14] | ZHI Dongming, LI Jianzhong, CHEN Xuan, YANG Fan, LIU Juntian, LIN Lin. Exploration Progress and Potential Evaluation of Deep Oil and Gas in Turpan-Hami Exploration Area [J]. Xinjiang Petroleum Geology, 2023, 44(3): 253-264. |
[15] | KANG Jilun, FU Guobin, HAN Cheng, LIANG Hui, MA Qiang, LIANG Guibin, CHEN Gaochao. Sequence Division of Shiqiantan Formation in Shiqiantan Sag on Eastern Uplift of Junggar Basin [J]. Xinjiang Petroleum Geology, 2023, 44(3): 265-276. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||