[1] |
任新成. 准噶尔盆地永进油田西山窑组油藏成岩演化及成藏史[J]. 新疆石油地质, 2021, 42(1):21-28.
|
|
REN Xincheng. Diagenetic evolution and hydrocarbon accumulation history in reservoirs of Xishanyao formation in Yongjin oilfield,Junggar basin[J]. Xinjiang Petroleum Geology, 2021, 42(1):21-28.
|
[2] |
赖锦, 王贵文, 范卓颖, 等. 非常规油气储层脆性指数测井评价方法研究进展[J]. 石油科学通报, 2016, 1(3):330-341.
|
|
LAI Jin, WANG Guiwen, FAN Zhuoying, et al. Research progress in brittleness index evaluation methods with logging data in unconventional oil and gas reservoirs[J]. Petroleum Science Bulletin, 2016, 1(3):330-341.
|
[3] |
徐君, 杨春, 孟朋飞. 吐哈探区非常规油气资源开发策略[J]. 新疆石油地质, 2023, 44(3):314-320.
|
|
XU Jun, YANG Chun, MENG Pengfei. Development strategies for unconventional oil and gas resources in Turpan-Hami exploration area[J]. Xinjiang Petroleum Geology, 2023, 44(3):314-320.
|
[4] |
郭旭升, 周德华, 赵培荣, 等. 鄂尔多斯盆地石炭系-二叠系煤系非常规天然气勘探开发进展与攻关方向[J]. 石油与天然气地质, 2022, 43(5):1013-1023.
|
|
GUO Xusheng, ZHOU Dehua, ZHAO Peirong, et al. Progresses and directions of unconventional natural gas exploration and development in the Carboniferous-Permian coal measure strata,Ordos basin[J]. Oil & Gas Geology, 2022, 43(5):1013-1023.
|
[5] |
刘红英, 李冀秋. 低渗致密储层微纳米孔喉分布及其对渗流的影响[J]. 非常规油气, 2023, 10(3):98-102.
|
|
LIU Hongying, LI Jiqiu. Distribution of micro-nano pore throat and its influence on seepage in low permeability and tight oil reservoir[J]. Unconventional Oil & Gas, 2023, 10(3):98-102.
|
[6] |
郝牧歌, 张金功, 马士磊. 从常规与非常规油气成藏的正相关性角度预测有利区:以孤岛1号凹隆域低部位为例[J]. 油气地质与采收率, 2022, 29(4):46-56.
|
|
HAO Muge, ZHANG Jingong, MA Shilei. Favorable area prediction from perspective of positive accumulation correlation between conventional and unconventional oil and gas reservoirs:A case of low part in Gudao No.1 sag-uplift band[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(4):46-56.
|
[7] |
王小兵, 胡炎射, 李森, 等. 沉积岩致密油藏压裂裂缝导流能力及产能模型[J]. 新疆石油地质, 2023, 44(4):442-449.
|
|
WANG Xiaobing, HU Yanshe, LI Sen, et al. Models for conductivity and productivity of hydraulic fractures in tight oil reservoirs in sedimentary rocks[J]. Xinjiang Petroleum Geology, 2023, 44(4):442-449.
|
[8] |
李雪晨, 马新仿, 肖凤朝, 等. 基于模糊综合评判的致密油储层压裂选井组合方法[J]. 大庆石油地质与开发, 2022, 41(2):147-156.
|
|
LI Xuechen, MA Xinfang, XIAO Fengchao, et al. Combined method of candidate fracturing well in tight oil reservoirs based on fuzzy comprehensive evaluation[J]. Petroleum Geology & Oilfield Development in Daqing, 2022, 41(2):147-156.
|
[9] |
肖阳, 刘守昱, 何永志, 等. 致密砂岩裂缝性气藏缝网压裂裂缝复杂程度评价方法[J]. 特种油气藏, 2022, 29(2):157-163.
doi: 10.3969/j.issn.1006-6535.2022.02.023
|
|
XIAO Yang, LIU Shouyu, HE Yongzhi, et al. Evaluation method of fracture complexity of fracture network fracturing for tight sandstone fractured gas reservoir[J]. Special Oil & Gas Reservoirs, 2022, 29(2):157-163.
|
[10] |
RICKMAN R, MULLEN M, PETRE E, et al. A practical use of shale petrophysics for stimulation design optimization:All shale plays are not clones of the Barnett shale[R]. SPE 115258, 2008.
|
[11] |
唐颖, 邢云, 李乐忠, 等. 页岩储层可压裂性影响因素及评价方法[J]. 地学前缘(中国地质大学(北京);北京大学), 2012, 19(5):356-363.
|
|
TANG Ying, XING Yun, LI Lezhong, et al. Influence factors and evaluation methods of the gas shale fracability[J]. Earth Science Frontiers(China University of Geosciences(Beijing);Peking University), 2012, 19(5):356-363.
|
[12] |
袁俊亮, 邓金根, 张定宇, 等. 页岩气储层可压裂性评价技术[J]. 石油学报, 2013, 34(3):523-527.
doi: 10.7623/syxb201303015
|
|
YUAN Junliang, DENG Jin’gen, ZHANG Dingyu, et al. Fracability evaluation of shale-gas reservoirs[J]. Acta Petrolei Sinica, 2013, 34(3):523-527.
doi: 10.7623/syxb201303015
|
[13] |
夏宏泉, 杨双定, 弓浩浩, 等. 岩石脆性实验及压裂缝高度与宽度测井预测[J]. 西南石油大学学报(自然科学), 2013, 35(4):81-89.
|
|
XIA Hongquan, YANG Shuangding, GONG Haohao, et al. Research on rock brittleness experiment and logging prediction of hydraulic fracture height & width[J]. Journal of Southwest Petroleum University (Science and Technology Edition), 2013, 35(4):81-89.
|
[14] |
曾治平, 刘震, 马骥, 等. 深层致密砂岩储层可压裂性评价新方法[J]. 地质力学学报, 2019, 25(2):223-232.
|
|
ZENG Zhiping, LIU Zhen, MA Ji, et al. A new method for fracability evaluation in deep and tight sandstone reservoirs[J]. Journal of Geomechanics, 2019, 25(2):223-232.
|
[15] |
JARVIE D M, HILL R J, RUBLE T E, et al. Unconventional shale-gas systems:The Mississippian Barnett shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin, 2007, 91(4):475-499.
|
[16] |
赵金洲, 许文俊, 李勇明, 等. 页岩气储层可压性评价新方法[J]. 天然气地球科学, 2015, 26(6):1165-1172.
|
|
ZHAO Jinzhou, XU Wenjun, LI Yongming, et al. A new method for fracability evaluation of shale-gas reservoirs[J]. Natural Gas Geoscience, 2015, 26(6):1165-1172.
|
[17] |
HUCKA V, DAS B. Brittleness determination of rocks by different methods[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1974, 11(10):389-392.
|
[18] |
时贤, 蒋恕, 卢双舫, 等. 利用纳米压痕实验研究层理性页岩岩石力学性质:以渝东南酉阳地区下志留统龙马溪组为例[J]. 石油勘探与开发, 2019, 46(1):155-164.
doi: 10.11698/PED.2019.01.16
|
|
SHI Xian, JIANG Shu, LU Shuangfang, et al. Investigation of mechanical properties of bedded shale by nanoindentation tests:A case study on Lower Silurian Longmaxi formation of Youyang area in southeast Chongqing,China[J]. Petroleum Exploration and Development, 2019, 46(1):155-164.
|
[19] |
OLIVER W C, PHARR G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J]. Journal of Materials Research, 1992, 7(6):1564-1583.
|
[20] |
张广清, 陈勉, 金衍, 等. 围压下泥岩断裂韧性测试与解释方法[J]. 工程地质学报, 2004, 12(4):431-435.
|
|
ZHANG Guangqing, CHEN Mian, JIN Yan, et al. Measurement and interpretation of shale toughness under confining pressures[J]. Journal of Engineering Geology, 2004, 12(4):431-435.
|
[21] |
CHENG Yangtse, LI Zhiyong, ZHENG Chemin. Scaling relationships for indentation measurements[J]. Philosophical Magazine A, 2002, 82(10):1821-1829.
|
[22] |
孙建孟, 韩志磊, 秦瑞宝, 等. 致密气储层可压裂性测井评价方法[J]. 石油学报, 2015, 36(1):74-80.
doi: 10.7623/syxb201501009
|
|
SUN Jianmeng, HAN Zhilei, QIN Ruibao, et al. Log evaluation method of fracturing performance in tight gas reservoir[J]. Acta Petrolei Sinica, 2015, 36(1):74-80.
doi: 10.7623/syxb201501009
|
[23] |
李庆辉, 陈勉, 金衍, 等. 页岩脆性的室内评价方法及改进[J]. 岩石力学与工程学报, 2012, 31(8):1680-1685.
|
|
LI Qinghui, CHEN Mian, JIN Yan, et al. Indoor evaluation method for shale brittleness and improvement[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(8):1680-1685.
|
[24] |
MAVKO G, MUKERJI T, DVORKIN J. The rock physics handbook:Tools for seismic analysis of porous media[M]. Cambridge, United Kingdom: Cambridge University Press, 2009.
|
[25] |
王璞, 吴国忱. 基于自相容近似的致密储层岩石物理建模[J]. 地球物理学进展, 2015, 30(5):2233-2238.
|
|
WANG Pu, WU Guochen. The rock physics modeling for tight reservoir based on the self-consistent approximation[J]. Progress in Geophysics, 2015, 30(5):2233-2238.
|
[26] |
QIAN Keran, LIU Tao, LIU Junzhou, et al. Construction of a novel brittleness index equation and analysis of anisotropic brittleness characteristics for unconventional shale formations[J]. Petroleum Science, 2020, 17(1):70-85.
doi: 10.1007/s12182-019-00372-6
|
[27] |
NORRIS A N. A differential scheme for the effective moduli of composites[J]. Mechanics of Materials, 1985, 4(1):1-16.
|